
Minimum energy target tracking with coverage guarantee in

wireless sensor networks

Charly Lersteaua, André Rossib, Marc Sevauxa,∗

aUniversité de Bretagne-Sud – Lab-STICC, CNRS, UMR 6285 – Lorient, France
bUniversité d’Angers – LERIA-Angers, France

Abstract

Wireless Sensor Networks (WSN) are composed of low-cost sensors designed to monitor
targets inside their sensing range. The sensors are randomly dispatched in a region and
have a limited battery capacity. The targets are moving and their trajectory are subject to
uncertainty. A way to save energy of the WSN is to activate subsets of sensors covering all
the targets. The challenge of this paper is to preserve and balance the residual capacities
of the sensors in order to perform further target tracking missions using the same WSN. A
two-step exact method is proposed. First, the input data is processed in order to design a
mathematical formulation. Second, a column generation algorithm, combined with a GRASP
metaheuristic, assigns activation time to sensors.

Keywords: wireless sensor networks, target tracking, column generation, matheuristics

1. Introduction

1.1. Context

Wireless sensor networks have received a particular attention in the past few years, and
have been used in a growing number of applications including traffic control and battlefield
surveillance [1, 2]. A set of sensors is randomly deployed in a region in order to track targets.
Several targets are moving through the sensing ranges of the different sensors. Each sensor
has a limited battery capacity and a sensing unit able to collect information about the
targets in its sensing range. Since the sensors are autonomous and the batteries are non-
rechargeable, an important aspect of wireless sensor networks is the energy consumption.
A convenient way to save battery lifetime is to activate a subset of the sensors only when
necessary. Supposing that we are provided a prevision of the trajectories of the targets,
we aim at scheduling sensor activities, ensuring that all the targets are monitored at any
time. The target trajectories are also subject to uncertainty. At any time, their position can
deviate up to a certain distance from the prevision.

∗Corresponding author
Email addresses: charly.lersteau@univ-ubs.fr (Charly Lersteau), andre.rossi@univ-angers.fr

(André Rossi), marc.sevaux@univ-ubs.fr (Marc Sevaux)

Preprint submitted to Elsevier

The zone of interest is a subset of the region that should be monitored in further missions.
In our context, further missions are monitoring tasks performed by the same set of sensors
once current monitoring tasks are terminated. In order to maintain the WSN ability to
monitor the zone of interest for future missions, the challenge is to preserve and balance the
residual energy capacities. Thus, the first objective is to maximize the minimum amount of
time during which the wireless sensor network can monitor any point of the zone of interest.
This duration is referred to as the coverage guarantee. Having maximized the coverage
guarantee, we search for a solution that minimizes the energy consumption for accomplishing
the current target tracking mission, while maintaining the maximum coverage guarantee.

1.2. Related work

Studies about wireless sensor networks are abundant in the literature. Plenty of protocols
are proposed, considering aspects including energy consumption [3–6], tracking precision [7,
8], scalability [9], and fault tolerance [10–14]. Naderan et al. [15] presents a more exhaustive
review of the criteria used in the WSN protocols. Guo and Zhang [16] survey intelligence-
based routing protocols based on optimization techniques to prolong WSN lifetime. Rault
et al. [17] propose a taxonomy of WSN applications and a classification of energy-conservation
schemes.

1.2.1. WSN for static targets

The optimization problems involving static targets are well studied. One of the most
popular is the network lifetime maximization problem. The network lifetime is the amount
of time elapsed until a target is not covered anymore. The mission consists in finding a
schedule of sensor activites maximizing the network lifetime.

This problem has numerous variants. MNLB (Maximizing Network Lifetime under Band-
width constraints) and MCBB (Minimizing Coverage Breach under Bandwidth constraints),
are solved using heuristics [18] or column generation [19]. A variant involving heterogeneous
networks is handled by Carrabs et al. [20], by speeding up a column generation algorithm
using a genetic algorithm. Castaño et al. [21] address the problem of network lifetime maxi-
mization with communication and multi-roles sensors. In their column generation approach,
they solve the pricing problem using constraint programming and Branch-and-Cut based
on Benders’ decomposition. Carrabs et al. [22] propose a new column generation algorithm
combined with a genetic algorithm and improve the formulation proposed in [21] by using
fewer integer variables. In [23], they allow partial coverage and describe a genetic algorithm
designed to speed up the column generation. Given a set of group of directional sensors,
Singh and Rossi [24] propose to solve two scheduling problems: the total rotation minimiza-
tion problem (TRMP) and the minimum blindness problem (MBP). They show that (MBP)
is equivalent to the Hamiltonian path problem and design a greedy heuristic and a genetic
algorithm for (TRMP). Lu et al. [25] provide a polynomial-time approximation algorithm for
the network lifetime maximization problem where the density of targets is bounded, taking
into account communication costs with a base station. Supposing that the energy consump-
tion of the sensors is proportional to the number of monitored targets, then the network
lifetime maximization problem is polynomial. Liu et al. [26] provide a continuous linear

2

formulation. Given a set of covers, i.e. subsets of sensors, the Cover Scheduling Problem
(WSN-CSP) is to find a schedule minimizing the longest continuous duration of time for
which a target is not covered [27, 28].

1.2.2. WSN for target tracking

In the field of moving target tracking, the survey by Naderan et al. [15] reports only
one target tracking protocol relying on optimization techniques, designed by Lee et al. [29]
and extended by Yeong-Sung et al. [30]. The optimization problem takes target movement
frequencies as input, and consists in minimizing the communication costs. The proposed
protocol builds an object tracking tree and uses a Lagragian relaxation-based heuristic algo-
rithm based on 0/1 linear formulation. Atia et al. [31] study the problem of finding a schedule
of sensor activities optimizing the tradeoff between tracking performance and energy con-
sumption, using a partially observable Markov decision process. Shi et al. [32] provide a
prediction method and a sensor scheduling scheme, aiming at balancing tracking quality and
network lifetime. The purpose of the method is to guarantee that the target moving area is
covered by at least k sensors with probability of at least α.

1.2.3. Robustness for WSN

Because targets and sensors are immersed in a changing, uncertain environment, robust-
ness is a highly desirable feature for a target tracking system. Chen et al. [33] propose a
distributed sensor activation algorithm (DSA2) suitable for binary sensors, activating sensors
with probabilities. Robustness is studied according to the maximum velocity of the targets,
the sensing range or the sensor density. Many of the works in robustness are focused on
network survivability, i.e. the ability to resist to failures including enemy attacks or sensor
deficiencies [34–36]. A prediction scheme for maintaining track continuity for ground bat-
tlefield surveillance is proposed in [37]. Targets are supposed to be able to move on and
off a road under several motion models. Our previous study [38] aims at finding a robust
schedule covering a single target at any time, assuming that the target is subject to temporal
uncertainty, i.e. the target can be early or late from a prevision.

1.2.4. Contribution and paper organization

This paper focuses on the ability of a sensor schedule to resist to target behavior pertur-
bations, in particular spatial uncertainty. Although this paper is to schedule sensor activities,
it does not rely on the classical scheduling paradigm, where tasks are part of the problem
input. By contrast, tasks can be seen as the result of the scheduling activity, which consists
in deciding when and how long each sensor should be used. An comprehensive survey about
robustness in scheduling can be found in [39].

In [40], we consider the total energy consumption minimization and the network lifetime
maximization problems for moving targets having a fully deterministic and known trajectory.
The present work takes a step further from these approaches in two major directions. First,
by considering the global context of the WSN, i.e. by taking into account the long-term
objectives of the WSN manager, with the introduction of the zone of interest and the coverage
guarantee. Hence, all the optimization efforts are not spent on the current mission, at the

3

expense of the future use of the WSN. Second, by considering not only one but many targets,
and by explicitly taking into account the fact that the spatial position of a moving target
cannot be exactly known at any time. To do so, the notion of uncertainty disc is introduced
for modeling the zone in which a target is likely to be found, but the approach proposed in
this paper can be applied to those cases where this zone of uncertainty is not a disc, as in
[41].

This paper is organized as follows. Section 2 presents the problem investigated in this
work. A preliminary step called discretization is introduced, in order to transform the input
data into a scheduling problem instance. Such a procedure is necessary to present the
mathematical formulations in Section 3. The column generation procedure is presented in
Section 4. Section 5 presents and discusses numerical results and Section 6 concludes this
paper.

2. Preliminaries

This section introduces the notations used throughout the paper, and presents the data
processing procedure called discretization. A complexity analysis of the three subproblems
into which the main problem is decomposed is performed, and two particular cases where they
can be solved in polynomial time are presented. A procedure for reducing the instance size
is given before proposing a mathematical formulation of these three subproblems. Finally,
two upper bounds are provided for the last two subproblems.

2.1. Notations
A wireless sensor network is composed of a set of m sensors (denoted by I) randomly

dispatched in a two-dimensional region. Its purpose is to continuously monitor a set of
n moving targets (denoted by J) in the sensing range of the sensors (discs of radius R).
The expected trajectory of each target is known and is denoted by Tj(t). Without loss of
generality, we consider that Tj(t) is defined for t ∈ [0, H], where H is the time horizon. Each
sensor i is equipped with a battery having lifetime Ei. Table 1 describes the initial input
data of the problem.

I Set of sensors {1, . . . ,m}
J Set of targets {1, . . . , n}

(xi, yi) Position of sensor i, (xi, yi) ∈ R2

R Radius of the sensing disc of the sensors
Ei Battery lifetime of sensor i
H Time horizon
F ∗ Zone of interest
Tj(t) Expected trajectory of the target j for all t ∈ [0, H]

Table 1: Initial problem input

A sensing activity is the action of activating a sensor for monitoring targets during a
certain amount of time. Then, we aim at finding a schedule of activities meeting these
requirements:

4

• The sum of the activities of a sensor i cannot exceed its battery lifetime Ei.

• Every target must be monitored by at least one sensor throughout the mission.

The zone of interest, denoted by F ∗, defines a subset of the region in which the sensors
will be needed for further missions. The problem investigated in this paper is decomposed
into three consecutive subproblems. The first one, denoted by MRC for Maximize minimal
Residual Capacity, is to find a feasible schedule for the current target tracking mission, if such
a solution exists. The so-called residual capacity of a sensor is the amount of time during
which that sensor can be used after the current mission. After solving MRC to optimality, if
there exists a sensor with a strictly negative residual capacity, then the problem instance is
infeasible, as the current mission cannot be accomplished without violating physical battery
constraints of at least one sensor. The second one is denoted by MCG for Maximize Coverage
Guarantee in Target Tracking. MCG is to find a feasible schedule for the current target
tracking mission that maximizes the coverage guarantee. The coverage guarantee is the
minimum amount of time that the sensor network is able to monitor any point of the zone
of interest after the current mission. The third subproblem, denoted by MEC for Minimize
Energy Consumption in Target Tracking, is to find a feasible schedule that minimizes the
total amount of energy required for the current target tracking mission, while ensuring that
the coverage guarantee is maximum (i.e. has the value returned by MCG). Thus, we aim
at finding a solution that preserves the network coverage ability while minimizing the total
amount of energy required to complete the mission.

The subproblems are consecutive in the sense that the output of one subproblem is the
input of the next subproblem. Indeed, solving MRC ensures feasibility of MCG, and the
value of the coverage guarantee computed in MCG is needed in MEC.

The spatial trajectories of the targets are subject to uncertainty. At any instant t, a
target j can be far up to a distance of δ from the expected position Tj(t). This implies the
need to cover an uncertainty disc. We define the uncertainty disc as the set of all the possible
locations of target j at time t. The uncertainty disc is centered at Tj(t) and has a radius of
δ. In this model, uncertainty is defined by δ, where δ may vary over time.

2.2. Discretization

The monitored region is partitioned into zones called faces. It can be seen as a planar
graph [42, 43], in which the vertices represent the intersections between the boundaries of the
sensors’ discs and the edges join the vertices. Thus, the faces are delineated by the vertices
and the edges. All the points inside a face are covered by the same set of sensors. This
property is convenient since the shape of the trajectory is not needed to solve the problem.
Then, we define a face by a unique set of covering sensors. For example, the geometric faces
7 and 7′ in Figure 1 are considered as only one face numbered 7, since they are covered by
the same set of sensors {s2}. The set of all faces is denoted by F̂ , and the subset of faces
in which the targets are moving is F ⊆ F̂ . Then, the zone of interest F ∗ can be formally
defined as a subset of the faces of F .

First, we consider the case where the target positions are exactly known, i.e. each target
is represented as a single point (which is equivalent to δ = 0). For each target j ∈ J ,

5

s1

s2

s3

1

2
3 4 5

6

7

7′

Figure 1: A planar graph based on 3 sensors with
7 faces

s1

s2

s3

δ

{s1}{s1, s2} {s1, s2, s3} {s1, s3}{s1}
t1 t2 t3 t4 t5 t6

Figure 2: Sets of candidate sensors along the tar-
get trajectory

the trajectory can be formulated as a sequence (f j1 , f
j
2 , . . . , f

j
p) ∈ F p of the traversed faces,

where p is the number of times that the target enters a face. A tick tjk is defined by a date of
transition of a target from the face f jk−1 to f jk . As soon as we compute the union of all the

ticks tjk into one unique set of ticks tk, the moving target problem can be seen as a sequence
of face covering problems, since between two consecutive ticks tk and tk+1, each target stays
in the same face.

The case where trajectories are subject to uncertainty is now considered. Then, at any
instant of time, the uncertainty disc of a target can overlap several faces. In Figure 2, an
example of uncertainty disc, represented as a dashed circle, overlaps simultaneously two
faces. Consequently, the coverage requirement of the target implies the coverage of all the
faces that have a nonempty intersection with the uncertainty disc at the considered instant
of time. Naturally, the number of sensors needed to cover the corresponding target can only
increase with δ. However, under uncertainty, the moving target problem can still be seen as
a sequence of face covering problems. In this case, a tick corresponds to a date for which
the set of faces to cover changes, i.e. a target disc meets a new face or leaves another one.
Consequently, the problem where trajectories are subject to uncertainty can be reduced to
a larger instance of face covering problem, without loss of generality.

The time horizon is partitionned into time windows, where a time window is a period
between two consecutive ticks. Let K be the set of time windows. The duration of a time
window k ∈ K is denoted by ∆k = tk+1 − tk. The set of faces to cover during the time
window k is denoted by T (k) ⊆ F . A candidate sensor for a face f ∈ F is a sensor that is
able to cover this face. The set of all the candidate sensors for face f is denoted by S(f) ⊆ I.

2.3. Example

Consider a WSN of 3 sensors (denoted by s1, s2, s3) monitoring 2 targets (denoted by
t1, t2) as illustrated in Figure 3. The monitored area is discretized into faces denoted by

6

fk where k is the index of the face. We suppose that the time horizon is H = 150 units of

s1

s3

s2

t1

t2

f1
f2 f3

f4

f5

Figure 3: A simple example of 3 sensors and 2 targets

time and the targets are not subject to uncertainty. Along their trajectory, we assume that
the two targets cross the sensor boundaries simultaneously. This means that the target t1
reaches the face f2 exactly when the target t2 reaches the face f4, and that t1 reaches f3

exactly when t2 reaches f5. Therefore, the time horizon is partitionned into 3 time intervals
of 50 units of time. The initial battery lifetime of each sensor is Ei = 100 units of time.

Suppose we want a schedule that minimizes the total energy consumption. This is
achieved by activating first s1 during 100 units of time, then s2 and s3 simultenaously during
50 units of time. However, the residual capacity of s1 would be zero. If a new target further
entered the face f1, no sensor would be able to monitor it. Then we aim at maximizing the
ability of the WSN to monitor the zone of interest. Suppose that the face f1 is the zone of
interest. An optimal schedule activates s1 during 50 units of time, then s2 and s3 during 100
units of time. Then the WSN is able to further monitor f1 during 50 units of time. If the
zone of interest is composed of all the visited faces, an optimal schedule activates s1 during
75 units of time, then s2 and s3 simultaneously during 75 units of time. This guarantees
that each face can be further monitored during 25 units of time.

Lemma 1. Deciding if MRC is feasible is NP-complete.

Proof. Consider an instance of MRC with only one time window of duration ∆. Then the
problem is equivalent to the decision problem version of MNLB [19], which is NP-complete,
i.e. does there exist a schedule such that the network lifetime is greater than or equal to
∆?

Corollary: By definition of MCG and MEC, it can also be deduced that deciding if each
of these two problems is feasible is NP-complete too.

It is recalled that F is the set of all the faces that are visited by a target for a strictly

positive amount of time. For all Ω ⊆ F , we define H(Ω) =
⋃
f∈Ω

S(f) as the set of sensors

that can cover at least one face in Ω.

7

Lemma 2. (Sufficient condition for infeasibility)

If there exists Ω ⊆ F such that
∑

i∈H(Ω)

Ei <
∑

k∈K|Ω∩T (k)6=∅

∆k, then MRC is infeasible.

Proof. If the amount of time during which a collection of faces must be monitored exceeds
the total time during which the sensors able to monitor them are available, the problem is
obviously infeasible.

Lemma 3. (Sufficient condition for feasibility)
Let K(i) = {k ∈ K|∃f ∈ T (k), i ∈ S(f)} be the set of time windows in which sensor i is
candidate. If ∃i ∈ S(f), Ei ≥

∑
k∈K(i) ∆k for all face f ∈ F , then MRC is feasible.

Proof. If for each face there exists a sensor that can monitor it (and is also able to monitor
any other face it can cover) for a duration that exceeds the total monitoring time of the face,
then a feasible solution can be built by activating this sensor every time the face has to be
covered.

Corollary: These sufficient conditions for infeasibility and feasibility also hold for MCG
and MEC.

2.4. Two particular cases where MCG and MEC can be solved in polynomial time

The following two particular cases are extreme scenarios where MCG and MEC can be
solved to optimality (or be proven infeasible) in polynomial time. In the first case, all the
targets are assumed to be coverable by any sensor at any time. This corresponds to situations
where the sensing range R of the sensors is very large. By contrast, the second case models
situations where the sensing range is so small that no sensor can cover more than one target
at a time. In both cases, MCG is formulated as a linear program of reasonable size. Then,
the optimal solution to MCG is also proven to be optimal for MEC. Since solving a linear
program is achievable in polynomial time with interior point methods, then so are MCG and
MEC in these two special cases.

2.4.1. Long-range sensors

Let us first consider the case where all the sensors are able to cover all the targets at any
time. In that case, the optimal objective value of MEC is obviously H as a single sensor
is used at any time. In addition, it can be deduced that all the targets are moving in the
same face together, so there is no need for discretization. It is now shown how MCG can be
solved to optimality or be proven infeasible, in polynomial time. MCG is formulated as the
following linear program denoted by LPlong and defined by the equations (1)-(6). Let xi be
the continuous, nonnegative decision variable representing the total amount of time during
which sensor i is active. The continuous, nonnegative variable Tmin is the duration of the
coverage guaranty offered for the faces in F ∗.

max Tmin (1)

8

∑
i∈I

xi = H (2)

xi ≤ Ei ∀i ∈ I (3)∑
i∈S(f)

(Ei − xi) ≥ Tmin ∀f ∈ F ∗ (4)

Tmin ≥ 0 (5)

xi ≥ 0 ∀i ∈ I (6)

Constraint (2) ensures that the mission duration is H units of time, and (3) enforces that
the battery of the sensors are not exceeded. Constraint (4) enforces the coverage guaranty
for all the faces of interest. LPlong has O(m) variables and O(m2) constraints, because the
number of faces is less than m2 [42]. Hence, since its size does not increase exponentially with
the problem data, it can be dealt with by a solver without having to apply decomposition
techniques.

LPlong is infeasible if and only if
m∑
i=1

Ei < H. In that case, the sensors do not have enough

energy to cover the targets for H units of time, therefore MCG and MEC are both infeasible
too. If LPlong is feasible, then its optimal solution is used to build an optimal solution to
MCG and MEC as follows. The sensors are activated in any order, and sensor i is used for
xi units of time for all i ∈ I. This solution is obviously optimal for MEC because constraint
(2) ensures that the total amount of energy spent over the mission is minimum.

2.4.2. Short-range sensors

Let us now consider the case where the targets are located in such a way that no sensor
can cover more than one target at a time. A sufficient condition for this to happen is when
the distance between any pair of targets is always strictly larger than 2R.

In that particular case, the optimal objective value of MEC is nH. Indeed, since no
sensor can cover two targets, then n sensors should be active at any time, hence the total
energy required by the mission is nH in any feasible solution. It is now shown how MCG
can be solved to optimality or be proven infeasible, in polynomial time.

Let F j ⊆ F be the set of faces visited by target j, for all j ∈ J . Note that if the same
face is visited multiple times by target j, then it appears only once in F j. The total amount
of time spent by target j in face f ∈ F j, is denoted by ∆jf for all f ∈ F j. It should also be
noted that F j ∩ F j′ may be nonempty for j 6= j′, but the faces in F j ∩ F j′ are never visited
by targets j and j′ at the same time by hypothesis.

MCG is formulated as the following linear program, denoted by LPshort and defined by
the equations (7)-(12). Let xjfi be the continuous, nonnegative decision variable representing
the total amount of time spent by sensor i monitoring the face f for tracking target j. The
continuous, nonnegative variable Tmin is the duration of the coverage guaranty offered for
the faces in F ∗.

max Tmin (7)

9

∑
i∈S(f)

xjfi = ∆jf ∀j ∈ J,∀f ∈ F j (8)

∑
j∈J

∑
f∈F j

xjfi ≤ Ei ∀i ∈ I (9)

∑
i∈S(f)

Ei −∑
j∈J

∑
f ′∈F j |i∈S(f ′)

xjf
′

i

 ≥ Tmin ∀f ∈ F ∗ (10)

Tmin ≥ 0 (11)

xjfi ≥ 0 ∀j ∈ J, f ∈ F j,∀i ∈ I (12)

Constraint (8) ensures that each face is covered for the required amount of time, and
(9) enforces that the battery of the sensors are not exceeded. Constraint (10) enforces the
coverage guaranty for all the faces of interest. LPshort has O(nm3) variables and O(nm2)
constraints, so its size is reasonably low to be dealt with by a solver.

If LPshort is infeasible, then MCG and MEC are both infeasible too, as the initial energy
of the sensors is insufficient to cover all the targets. If LPshort is feasible, then its optimal
solution is used to build a solution to MCG and MEC as follows. For each target j and each
face f ∈ F j, a sensor in S(f) such that xjfi > 0 is used for xjfi units of time. If ∆jf > xjfi ,
then another sensor i′ such that xjfi′ > 0 is used. The sensors can be used in any order, as
the scheduling problem is preemptive (it is recalled that a face can be visited multiple times
by the targets). The solution can be easily checked optimal for MEC by summing up the
constraint (8) for all j (the right-hand side amounts to H for all j, since each target is to
be monitored for H units of time). Then, summing up the n resulting equalities, the total
amount of energy spent is found to be nH.

2.5. Problem reduction

Due to the density of the sensor network, the number of time windows can be very high.
However, redundancy can be exploited to reduce the instance size.

Definition 1. (Dominance relation between faces)
Let k ∈ K be a given time window, and let f, f ′ be two distinct faces of T (k). The face f
dominates f ′ if S(f) ⊂ S(f ′).

If a face f ∈ T (k) dominates f ′ ∈ T (k), then the face f ′ can be removed from the sensing
requirement and ignored, since selecting a sensor in S(f) is sufficient to cover both faces f
and f ′. Removing all dominated faces increases the opportunity to find two time windows
k and k′ such that T (k) = T (k′). Then, time windows k and k′ are merged, which is a
desirable transformation as the problem instance size decreases. Algorithm 1 reduces the
number of time windows.

The duration of the time window k′ is added to the time window k (∆k ← ∆k + ∆k′)
and the time window k′ is removed. The index k′ is then associated to k in an index array
K. The number of time windows is therefore reduced and the original time windows can

10

Algorithm 1: Time windows reduction

// K is the ordered list of time windows

∀k ∈ K,K(k)← k
foreach k ∈ K do

foreach k′ ∈ K|k′ ≥ k + 1 do
if T (k) = T (k′) then

∆k ← ∆k + ∆k′

K ← K \ {k′}
K(k′)← k // Associate k′ to k

be recovered using the ticks and K. These reductions are useful for the column generation
procedure discussed in Section 4, because a NP-hard pricing problem is to be solved for each
time window.

Lemma 4. MRC can be transformed in such a way that the number of time windows, |K|,
is upper bounded by 2m(m−1)+1.

Proof. Let T (k) be the set of faces to be monitored during time window k. If T (k) = T (k′)
with k 6= k′, then time windows k and k′ can be merged, leading to delete time window k′,
and to extend the duration of time window k to ∆k ← ∆k +∆k′ . This elimination procedure
is repeated as long as there is no two time windows having the same set of faces. Since the
maximum number of faces is less than m(m − 1) + 2 [42], the maximum number of time
windows is less than 2m(m−1)+1. This upper bound can naturally be improved by considering
Fmax = maxk∈K |T (k)| the maximum number of faces to monitor in a time window. Then,
the number of time windows is upper bounded by 2Fmax−1 ≤ 2m(m−1)+1.

This lemma shows that the maximum theorical number of time windows is independent
of the number of targets and of the trajectories. However, in practice, few time windows are
produced when the targets visit few faces.

Corollary: The number of time windows is the same in MRC, MCG and MEC.

3. Mathematical formulations

MRC MCG MEC

Figure 4: The sequence of three subproblems

After discretization, the problem is decomposed into three consecutive subproblems as
illustrated in Figure 4. Subproblems MRC, MCG and MEC can be formulated as linear
programming models respectively denoted by MPMRC, MPMCG and MPMEC. Solving

11

consecutively these three subproblems results in an optimal solution that is a schedule of
cover activities. Additional nonlinear programs and mixed integer linear programs are pro-
vided in Appendix A, Appendix B and Appendix C to show the relevance of the column
generation decomposition.

3.1. MRC subproblem

The MRC subproblem is designed to build a feasible set of covers to achieve the current
mission or to prove infeasibility. It is recalled that a cover is a set of sensors that can cover
all the targets at a given instant of time. Solving MRC is necessary to address MCG and
MEC because the solution process of both these subproblems require a feasible set of covers
as input. The objective of MRC is to maximize the smallest residual capacity among the
sensors.

Let C be the set of all the covers and let C(k) be the set of feasible covers for the time
window k ∈ K. Let aic be a binary constant equal to 1 if the sensor i ∈ I belongs to the
cover c ∈ C, 0 otherwise. The decision variables of the linear program MPMRC, defined by
the equations (13)-(19), are the following:

• dkc is the activity duration of the cover c ∈ C(k) during the time window k ∈ K

• ri is the residual capacity of sensor i ∈ I

• rmin is the smallest residual capacity over all the sensors of I

The dual variables, πi and µk appear in brackets.

MPMRC max rmin (13)

s.t.∑
k∈K

∑
c∈C(k)

aicd
k
c + ri = Ei ∀i ∈ I [πi] (14)

∑
c∈C(k)

dkc = ∆k ∀k ∈ K [µk] (15)

ri ≥ rmin ∀i ∈ I (16)

dkc ≥ 0 ∀k ∈ K, c ∈ C(k) (17)

ri ∈ R ∀i ∈ I (18)

rmin ∈ R (19)

Constraint (14) states that the total activity of a sensor cannot exceed its capacity when
ri is nonnegative. Constraint (15) ensures that the targets are covered at any time during
each time window. Finally, constraint (16) ensures that rmin is equal to the smallest residual
capacity. Note that the domain of ri is R. MRC is feasible if and only if the optimal value
of rmin is positive or zero. Thus, computing the optimal value of rmin is not always needed
since non-negativity of rmin is equivalent to feasibility of MRC, MCG and MEC.

12

3.2. MCG subproblem

Inside the zone of interest, each face has a monitoring potential defined as the sum of
the capacities of the candidate sensors, after the current mission. The coverage guarantee,
denoted by Tmin, is defined as the minimal monitoring potential among all the faces of
interest. Thus, Tmin is the minimum time during which the wireless sensor network can
monitor any face in the zone of interest F ∗ after the end of the current mission. However, we
do not ensure that two faces of interest can be simultaneously monitored during this amount
of time. The objective of MCG is to compute T ∗min, the maximum value of the coverage
guarantee Tmin, in order to fix this value in the MEC subproblem.

MCG can also be decomposed into a master problem and a pricing problem to apply
a column generation algorithm. The sets of covers C and C(k) are identical to the ones
introduced in MRC. Let aic be a binary constant equal to 1 if the sensor i ∈ I belongs to
the cover c ∈ C, 0 otherwise. The formulation of MPMCG include the following variables:

• dkc is the activity duration of the cover c ∈ C(k) during the time window k ∈ K

• ri is the residual capacity of sensor i ∈ I

• Tmin is the duration of the coverage guarantee

MPMCG max Tmin (20)

s.t.

(14)− (15)∑
i∈S(f)

ri ≥ Tmin ∀f ∈ F ∗ [λf] (21)

Tmin ≥ 0 (22)

ri ≥ 0 ∀i ∈ I (23)

(17)

Constraint (21) ensures that Tmin is equal to the coverage guarantee. MPMRC and
MPMCG share the same constraints (14)-(15), for enforcing the battery capacity constraints
and the target coverage requirements of the current mission. Then every feasible cover for
MPMRC is feasible for MPMCG.

3.3. MEC subproblem

MCG subproblem can have several optimal solutions, corresponding to schedules with
different energy consumptions for achieving the current mission. MEC is then to return
a solution that minimizes the energy consumption incured by the current mission, among
those that maximize the coverage guarantee. The sets of covers C and C(k) are identical
to the ones used for MRC and MCG. Let aic be a binary constant equal to 1 if the sensor
i ∈ I belongs to the cover c ∈ C, 0 otherwise. The decision variables of the following linear
program MPMEC are the following:

13

• dkc is the activity duration of the cover c ∈ C(k) during the time window k ∈ K

• ri is the residual capacity of sensor i ∈ I

The objective of MEC is to minimize the total energy consumption, that is equivalent to
maximize the sum of the residual capacities. For the sake of clarity, the maximization version
is considered in the rest of the paper. As a result, the subproblems MRC, MCG and MEC
share the same pricing problem for the column generation algorithm introduced in Section
4.

MPMEC min
∑
i∈I

(Ei − ri)⇔ max
∑
i∈I

ri (24)

s.t.

(14)− (15)∑
i∈S(f)

ri ≥ T ∗min ∀f ∈ F ∗ [λf] (25)

(17), (23)

Constraint (25) ensures the coverage guarantee for each face of interest. MPMCG and
MPMEC share the same constraints (14)-(15). Consequently, any feasible set of covers for
MPMCG is feasible for MPMEC.

However, MPMCG and MPMEC do not share the same solutions. Indeed, there exist
feasible schedules for MPMCG such that the coverage guarantee is strictly less than T ∗min.
In a similar manner, feasible solutions of MPMRC are not necessarily feasible for MPMCG,
since MPMRC allows negative residual capacities. In fact, from MPMRC to MPMCG and
from MPMCG to MPMEC, the solution space is reduced, as a new constraint is added,
and feasible solutions of MPMEC (respectively MPMCG) are included in the feasible set of
MPMCG (respectively MPMRC).

3.4. Bounds

Bounds are proposed for MCG and MEC to evaluate the gap between the current ob-
jective value and the optimal one. When the gap is zero, the expensive last iteration of
the column generation algorithm presented in Section 4 can be avoided, since the current
solution is proven optimal.

3.4.1. Bounds for MCG

Let Tmin
∗ be the maximal coverage guarantee. A trivial upper bound on Tmin

∗ computes
on each face the difference between the total energy of its candidate sensors and the coverage
demand of the targets crossing it.

UB1MCG = min
f∈F ∗

 ∑
i∈S(f)

Ei −
∑

k∈K|f∈T (k)

∆k


14

The upper bound UB1MCG can be extended to set of faces. Let F ⊆ F ∗ be a subset of
the faces overlapping the critical zone. Then UB2MCG is computed in a similar way, using
union of faces instead of a single one.

UB2MCG = min
F⊆F ∗

 ∑
i∈

⋃
f∈F S(f)

Ei −
∑

k∈K|F∩T (k) 6=∅

∆k


In practice, computing UB2MCG may be very expensive because it needs to enumerate

all the subsets of faces.

3.4.2. Bounds for MEC

An upper bound for the objective of MEC, denoted by UB1MEC is given by the difference
between the cumulated lifetime of the sensors and the time horizon.

UB1MEC =
∑
i∈I

Ei −
∑
k∈K

∆k

This bound can be improved by considering αk a lower bound on the minimal number of
sensors to activate in each time window k.

UB2MEC =
∑
i∈I

Ei −
∑
k∈K

αk∆k

4. Solution approach

4.1. Column generation algorithm

The number of feasible covers for each subproblem is in O(|K|2m). Enumerating all the
covers is generally not practicable. Then column generation is a suitable and efficient method
to solve linear programs when there is a very large number of columns and all of them cannot
be considered explicitely. Let MP be any of the linear programs MPMRC, MPMCG and
MPMEC. We denote by RMP, for restricted master problem, a model based on MP with
a restricted number of covers. Its main idea is to exploit the fact that only a subset of
the columns is needed to solve MP, because most of them will be non-basic in the optimal
solution. The procedure starts with a restricted master problem RMP containing a small
set of initial columns. When solved, RMP gives a dual solution (π, µ) and a lower bound
zRMP on MP. Then, the procedure is to iteratively add columns improving the objective
function, until none can be found. At each iteration, a pricing problem PP is addressed.
The purpose of PP is to find improving columns by maximizing their reduced cost. MP and
PP are solved alternatively until no profitable column can be found, then the final solution
of MP is proven optimal. In order to speed up the column generation, we also choose to
use a metaheuristic called GRASP for solving PP. Such an approach where a metaheuristic
is hybridized with a mathematical programming technique is called a matheuristic [44].
However, to prove optimality of the incumbent solution, the column generation algorithm
needs either to solve PP optimally at least once or to obtain an objective value equal to an

15

Initial covers

Master problem

UB reached?

Pricing problem (GRASP)

no

Profitable covers?
yes

Add covers

Pricing problem (ILP)

no

Profitable covers?
yes

Optimal solution

no

yes

Figure 5: Column generation algorithm for each subproblem

upper bound. In order to avoid the use of ILP that is expensive in computation time, upper
bounds presented in Section 3.4 are computed and compared to the current objective value.
When the current objective value reaches an upper bound, solving PP is not necessary since
optimality is proven by the upper bound. For MRC, the upper bound is zero since feasibility
is guaranteed by finding a minimum residual capacity greater than or equal to zero. The
upper bound used for MCG is UB1MCG. UB2MCG is computationnally expensive because it
relies on the enumeration of all the subsets of faces. Finally, UB2MEC is used for MEC, since
it dominates UB1MEC.

The column generation algorithm for each subproblem is an exact method illustrated in
Figure 5. MPMRC, MPMCG and MPMEC are designed to be consecutively solved, so the
final set of columns of the previous subproblem is the input for the current one. The three
subproblems also share the same pricing problem.

4.2. Pricing problem

The pricing problem PP can be decomposed into |K| independent subproblems PPk, one
for each time window k ∈ K. PPk is formulated as a linear program defined by the equations
(26)-(29). The πi and µk coefficients are the optimal values of the dual variables of RMP.
The binary decision variable aic is equal to 1 if sensor i is selected in the new cover c, 0
otherwise.

PPk max −
∑
i∈I

πiaic − µk (26)

16

s.t.∑
i∈S(f)

aic ≥ 1 ∀f ∈ T (k) (27)

∑
i∈I

aic ≤ |T (k)| (28)

aic ∈ {0, 1} ∀i ∈ I (29)

The objective (26) is to maximize the reduced cost of the new column. Constraint (27)
ensures that each face of T (k) is covered. To cover all the faces, a requirement is to select at
least one sensor among the candidate sensors in S(f) for each face f . Constraint (28) is a
valid inequality that bounds the number of activated sensors. Indeed, the number of sensors
required to cover |T (k)| faces cannot exceed |T (k)|.

Since finding a positive reduced cost is sufficient, it is not always necessary to solve PPk

to optimality. Moreover, PPk is equivalent to a set covering problem, that is NP-hard.
The column generation procedure can also be accelerated by metaheuristics like GRASP
[45]. Such an approach combining metaheuristics and mathematical programming is called
a matheuristic [44]. This combination can be designed in two ways. The first approach is to
use a mathematical programming technique either to improve or to design a metaheuristic.
The second approach, used in this paper, is to use a metaheuristic to improve a mathematical
programming technique [46].

GRASP (for Greedy Randomized Adaptive Search Procedure) builds a cover iteratively.
At each iteration, the procedure computes a utility score ui = ni

πi
for each sensor si, where ni is

the number of uncovered faces that the sensor i is able to cover. The utility score is designed
to select in priority sensors that maximize the reduced cost and cover a larger number of
faces. Using a parameter α ∈ [0, 1], we compute a threshold ulimit = umin+α(umax−umin). All
the sensors that have a utility greater than or equal to ulimit are put in the RCL (Restricted
Candidate List). Then, one sensor is chosen from the RCL and added to the cover. GRASP
performs new iterations until all the targets are covered. The procedure is complemented
with a local search algorithm using a 2-flip neighborhood as suggested in [45]. First, the
algorithm searches for sensors that can be removed without uncovering a target. Second,
we process 1-1 exchanges and 2-1 exchanges that improve the reduced cost while keeping
the cover feasible. The 1-1 exchange attempts to replace one sensor by another that has a
lower cost. Similarly, the 2-1 exchange tries to replace two sensors by one while guaranteeing
target coverage. The exchanges are processed as soon as they are found, without checking
whether a better move exists in the whole neighborhood.

Due to the fact that there are many independent auxiliary subproblems and several
methods to solve them, there are many possible strategies to generate the columns. Because
GRASP returns good solutions much faster than an ILP solver, a smart strategy is to run
it as much as possible before attempting to solve PPk with an ILP solver.

To summarize, our method solves three subproblems (MRC, MCG and MEC) consecu-
tively using column generation as illustrated in Figure 6. Since the pricing problem is the
same for all the subproblems, the set of covers found for the previous subproblem is used as

17

Discretization
Build initial covers

(GRASP) Solve MRC

Covers:

Solve MCG

Covers:

Solve MEC

Covers:

Optimal solution

Figure 6: General algorithm

initial covers of the current one. However, Constraint (15) of the models MPMRC, MPMCG
and MPMEC cannot be satisfied without building an initial set of covers. Since the dual
variables (π, µ) are not provided at first, an initial set of covers is obtained by first solving
the pricing problem with πi = 1,∀i ∈ I and µk = −|T (k)| − 1, ∀k ∈ K. This reduces the
pricing problem to the so-called Set Covering Problem with unit costs. The objective is
then to find covers with a minimum number of sensors, that are likely to be active in the
optimal solution since they minimize energy consumption. GRASP is chosen as the method
to compute covers of low cardinality in a short amount of time.

4.3. Dual bounds

Solving the pricing problems allows to compute additional bounds, thanks to the dual
formulation of the master problem. The dual of MPMCG is denoted by DMPMCG, and
defined by the equations (30)-(36).

DMPMCG min
∑
i∈I

Eiπi +
∑
k∈K

∆kµk (30)

s.t.

πi −
∑

f :i∈S(f)

λf ≥ 0 ∀i ∈ I [ri] (31)

∑
f∈F ∗

λf ≥ 1 [Tmin] (32)∑
i∈I

aicπi + µk ≥ 0 ∀k ∈ K, c ∈ C(k) [dkc] (33)

πi ∈ R ∀i ∈ I (34)

µk ∈ R ∀k ∈ K (35)

λf ≤ 0 ∀f ∈ F ∗ (36)

Now we consider the restricted linear programming master denoted by RMPMCG. It is
made of a subset of the columns of MPMCG, and contains all the ri and Tmin. The optimal
dual variables of RMPMCG are denoted by π̃, µ̃ and λ̃. Hence, we define |K| subproblems
denoted by PPk as:

max
c∈C(k)

zk = −
∑
i∈I

π̃iaic − µ̃k

18

Let z∗k be the optimal objective value of PPk. By definition, z∗k ≥ −
∑

i∈I π̃iaic − µ̃k for all
k ∈ K, and for all c ∈ C(k). This can be written as

∑
i∈I π̃iaic + (µ̃k + z∗k) > 0 for all k ∈ K,

and for all c ∈ C(k).
Then, setting:  π

µ
λ

 =

 π̃
µ̃+ z∗

λ̃


yields a feasible solution to DMPMCG. Indeed, the constraint (33) is satisfied by definition

of z∗ =
[
z∗1 . . . z

∗
|K|

]>
, the constraints (31) and (32) are also satisfied by π̃ and λ̃ because all

the ri variables and Tmin are present in RMPMCG (so their corresponding constraints are
also present in the dual of RMPMCG).

By the weak duality property, the objective value of any feasible solution to DMPMCG
is an upper bound on the optimal objective value of MPMCG, hence:

Tmin ≤
∑
i∈I

Eiπ̃i +
∑
k∈K

∆k(µ̃k + z∗k)

Now we define the dual of MPMEC, denoted by DMPMEC. For the sake of brevity, the
maximization version of MPMEC has been considered to formulate DMPMEC, since the
latter uses the same variables.

DMPMEC min
∑
i∈I

Eiπi +
∑
k∈K

∆kµk + T ∗min

∑
f∈F ∗

λf (37)

s.t.

πi −
∑

f :i∈S(f)

λf ≥ 1 ∀i ∈ I [ri] (38)

(33)− (36)

Using the same reasoning for DMPMEC, we obtain:∑
i∈I

ri ≤
∑
i∈I

Eiπ̃i +
∑
k∈K

∆k(µ̃k + z∗k)

5. Computational results

We performed our experiments on a set of 100 randomly generated instances. Each
instance describes the trajectories of n targets (n ∈ {5, 10, 15}) lying inside a 100 × 100
square region. A trajectory is represented as a piecewise linear curve composed of 4 segments
joining 5 randomly chosen control points. The dates of passage associated to each control
point are uniformly distributed along the time horizon H = 100 units of time. Thus, the first
control point is at t = 0, the last control point is at t = H, and the speed of the targets is

19

constant between every consecutive pair of control points. Consequently, a target may cross
the same face several times. A set of m sensors (m ∈ {50, 100, 150}) is randomly dispatched,
ensuring that each sensor covers a part of at least one target trajectory. We set R = 40
for the sensing radius of the sensors. The values of the initial capacities lie randomly in the
interval [0, 100]. The zone of interest considered is the set of faces traversed by the targets,
so F ∗ = F . For each parameter set (m,n), 10 instances are generated, then we obtain
3 × 3 groups of 10 instances. A set of 10 additional instances with m = 50 sensors and
n = 30 targets is added, making a total of 100 instances. We have also tested our method
on instances with 200 sensors and more. However, when the number of sensors exceeds 200,
the proposed approach cannot be used on our computer because of a lack of memory.

The algorithms have been implemented in C++ and executed on an Intel Xeon processor
W3520 (2.67 GHz × 8) with 8 GBytes RAM under Linux (Ubuntu 14.04). The linear
programs MPMRC, MPMCG, MPMEC are solved using IBM CPLEX 12.6.1. The pricing
problems PPk are solved approximately using a custom implementation of GRASP with a
local search, and exactly using CPLEX. Several randomization parameters α of GRASP,
lying in {0.6, 0.7, 0.8, 0.9, 1}, have been tested. The value α has no significant impact as
shown in Table 2. The number of selected sensors is always less than or equal to the number
of targets, and we observed that there are in average less than 4 sensors per cover in our
instances. In the rest of the experiments, the value of α has been empirically set to 0.8.
Each variant and each parameter set has been executed 10 times on each instance.

m n Avg. |K| α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

50

5 515 0.576 s 0.602 s 0.566 s 0.572 s 0.589 s
10 936 1.419 s 1.420 s 1.411 s 1.449 s 1.478 s
15 1304 2.455 s 2.456 s 2.301 s 2.506 s 2.490 s
30 1955 5.623 s 5.400 s 5.189 s 5.483 s 5.699 s

100
5 1080 1.468 s 1.445 s 1.486 s 1.378 s 1.428 s
10 2100 4.259 s 3.990 s 4.059 s 4.247 s 4.245 s
15 3061 8.614 s 8.427 s 8.115 s 8.058 s 8.003 s

150
5 1640 2.793 s 3.059 s 3.023 s 2.944 s 2.930 s
10 3260 10.05 s 9.042 s 9.234 s 11.17 s 10.55 s
15 4797 18.93 s 18.69 s 17.96 s 19.11 s 19.10 s

Table 2: Average CPU time according to the value α of GRASP (δ = 0)

First, we consider that the target positions are exactly known (uncertainty disc radius
δ = 0).

Table 3 compares the CPU times of the matheuristic approach (combining GRASP meta-
heuristic and CPLEX solver) denoted by GRASP+ILP, and the CPU times of the classical
column generation, that solves each PPk problem using CPLEX only (ILP). The third col-
umn contains the average number of time windows (after instance size reduction).

The matheuristic GRASP+ILP reduces the CPU time by a factor of 3 to 4 in average
compared to the ILP approach. Moreover, the instances are more difficult to solve as their

20

m n Avg. |K| GRASP+ILP ILP

50

5 515 0.566 s 1.938 s
10 936 1.411 s 4.749 s
15 1304 2.301 s 7.926 s
30 1955 5.189 s 16.30 s

100
5 1080 1.486 s 5.191 s
10 2100 4.059 s 15.70 s
15 3061 8.115 s 28.29 s

150
5 1640 3.023 s 11.52 s
10 3260 9.234 s 29.20 s
15 4797 17.96 s 68.88 s

Table 3: Average CPU time of GRASP+ILP and ILP according to the number of sensors

size increases, in particular when the number of time windows increases. Indeed, the number
of pricing problems to solve at each iteration of the column generation is equal to the number
of time windows.

m n δ = 0 δ = 1 δ = 2

50

5 515 598 607
10 936 1163 1210
15 1304 1677 1760
30 1955 2779 2938

100
5 1080 1295 1619
10 2100 2687 3379
15 3061 4072 5114

150
5 1640 2181 2769
10 3260 4646 5787
15 4797 7107 8781

Table 4: Average number |K| of time windows according to the radius δ of the uncertainty disc

Considering spatial uncertainty modifies the number of time windows generated by dis-
cretization. Indeed, an uncertainty disc may cross more boundaries of sensing discs than a
point. Table 4 shows the impact of the uncertainty disc on the number of time windows.
The uncertainty radius also impacts the CPU times of the discretization algorithm, as shown
in Table 5.

The instance reduction procedure plays a major role when target positions are uncertain.
Table 6 shows the efficiency of this procedure according to the number of sensors, the number
of targets, and the uncertainty disc radius. When δ = 0, the number of deleted time
windows increases significantly with the number of targets. Indeed, more targets increase
the probability to obtain redundant faces to cover, i.e. faces such that the set of candidate
sensors is a subset of the candidate sensors of another face. This offers more opportunity to
fuse time windows.

21

m n δ = 0 δ = 1 δ = 2

50

5 0.023 s 0.279 s 0.638 s
10 0.076 s 1.080 s 2.557 s
15 0.162 s 2.436 s 5.779 s
30 0.623 s 9.899 s 23.54 s

100
5 0.089 s 2.814 s 7.960 s
10 0.326 s 11.84 s 34.17 s
15 0.718 s 27.58 s 79.31 s

150
5 0.200 s 11.72 s 37.50 s
10 0.761 s 52.15 s 169.0 s
15 1.691 s 124.6 s 396.2 s

Table 5: Average CPU time of discretization according to uncertainty disc radius δ

m n δ = 0 δ = 1 δ = 2

50

5 7 % 46 % 45 %
10 16 % 48 % 46 %
15 22 % 50 % 47 %
30 41 % 58 % 55 %

100
5 3 % 42 % 27 %
10 7 % 41 % 25 %
15 10 % 40 % 25 %

150
5 2 % 35 % 17 %
10 4 % 32 % 14 %
15 6 % 30 % 14 %

Table 6: Average percentage of deleted time windows after instance size reduction

22

When the uncertainty disc radius is equal to 1, about 30% to 60% of time windows are
deleted in average. The reduction procedure performs better when we consider an uncertainty
disc, as the initial number of time windows is significantly larger. However, this phenomenon
is limited, as shown in the case where δ = 2. Indeed, the discretization may produce less
time windows for larger uncertainty radii. For instance, let’s consider a particular case of
one target following a sinusoidal trajectory along the boundary of a sensing disc of a sensor
i. If the uncertainty radius is sufficiently small, the target crosses twice the boundary at
each period. Consequently, each entrance and exit of the sensing disc produces a tick. If δ
grows large enough, then the uncertainty disc covers the boundary all the time. Thus, the
number of ticks is reduced, so the instance size reduction procedure may delete significantly
less time windows. On our instances, the number of time windows is generally slightly lower
with δ = 2 than with δ = 1.

m n δ = 0 δ = 1 δ = 2

50

5 0.004 s 0.076 s 0.113 s
10 0.048 s 0.546 s 0.784 s
15 0.198 s 1.837 s 2.638 s
30 2.164 s 20.76 s 28.45 s

100
5 0.011 s 0.440 s 0.669 s
10 0.114 s 3.493 s 5.619 s
15 0.459 s 16.44 s 21.66 s

150
5 0.019 s 1.204 s 2.306 s
10 0.176 s 12.43 s 18.54 s
15 0.686 s 46.66 s 57.72 s

Table 7: Average CPU time of the instance size reduction according to the uncertainty disc radius δ

As δ increases, more and more faces can be crossed by the uncertainty disc. The number
of deleted faces in the T (k) sets is significantly higher for δ = 2 than for δ = 1. However, the
number of fused time windows is smaller for δ = 2. Increasing the uncertainty disc radius
can also decrease the efficiency of the instance size reduction procedure.

The impact of instance size reduction on CPU time is shown in Table 7. When the target
position is subject to uncertainty, the CPU time of the reduction procedure can reach one
minute in average. However, the reduction procedure is profitable most of the time, as can
been seen by comparing the CPU times with Table 8, showing the CPU times of column
generation with and without reduction procedure. The columns denoted by Wo.R. display
the CPU times on non-reduced instances. The columns denoted by W.R. show the CPU
times on reduced instances, plus the CPU time of the reduction procedure. The columns
“Gain” show the percentage of CPU time saved thanks to the reduction procedure. For one
case (δ = 2, m = 150 sensors and n = 15 targets without reduction), the program has been
aborted because the CPU time exceeded 3600 seconds. The most significant time savings
are generally obtained with large values of δ and when the number of targets is greater than
15.

23

δ = 0 δ = 1 δ = 2
m n Wo.R. W.R. Gain Wo.R. W.R. Gain Wo.R. W.R. Gain

50

5 0.645 s 0.570 s 12 % 1.303 s 0.693 s 47 % 1.457 s 0.806 s 45 %
10 1.737 s 1.459 s 16 % 3.886 s 2.195 s 44 % 5.213 s 2.850 s 45 %
15 3.364 s 2.499 s 26 % 7.821 s 4.936 s 37 % 10.88 s 6.354 s 42 %
30 10.92 s 7.353 s 33 % 26.43 s 27.73 s -5 % 38.40 s 37.14 s 3 %

100
5 1.463 s 1.497 s 1 % 3.882 s 2.339 s 40 % 6.763 s 3.500 s 48 %
10 4.319 s 4.173 s 3 % 13.92 s 9.048 s 35 % 27.81 s 14.65 s 47 %
15 9.212 s 8.574 s 7 % 37.46 s 28.91 s 23 % 68.04 s 40.95 s 40 %

150
5 3.099 s 3.042 s 2 % 10.84 s 5.813 s 46 % 19.55 s 9.453 s 52 %
10 9.753 s 9.410 s 4 % 45.38 s 27.88 s 39 % 117.2 s 44.82 s 62 %
15 18.93 s 18.65 s 2 % 139.0 s 81.32 s 41 % N/A 114.0 s N/A

Table 8: CPU time of column generation, with and without instance size reduction

δ = 0 δ = 1 δ = 2
m n UB1MCG UB1MEC UB2MEC UB1MCG UB1MEC UB2MEC UB1MCG UB1MEC UB2MEC

50

5 < 0.01 % 2.18 % 0.28 % 0 % 2.18 % 0.94 % < 0.01 % 2.18 % 0.19 %
10 0 % 3.67 % 0.39 % 0 % 3.67 % 1.21 % < 0.01 % 3.67 % 0.29 %
15 0 % 5.10 % 0.51 % < 0.01 % 5.10 % 1.23 % < 0.01 % 5.10 % 0.31 %
30 0 % 7.78 % 0.85 % 0 % 7.78 % 1.46 % 0 % 7.78 % 0.33 %

100
5 0 % 0.90 % 0.11 % 0 % 0.90 % 0.15 % 0 % 0.90 % 0.02 %
10 0 % 1.53 % 0.13 % 0 % 1.53 % 0.15 % 0 % 1.53 % 0.05 %
15 0 % 2.23 % 0.22 % 0 % 2.23 % 0.20 % 0 % 2.23 % 0.06 %

150
5 0 % 0.54 % 0.06 % 0 % 0.54 % 0.01 % 0 % 0.54 % 0.01 %
10 0 % 0.96 % 0.09 % 0 % 0.96 % 0.04 % 0 % 0.96 % 0.04 %
15 0 % 1.40 % 0.15 % 0 % 1.40 % 0.10 % 0 % 1.40 % 0.08 %

Table 9: Average gap between the upper bounds and the optimal values

24

Table 9 shows the average gap in percents between the upper bounds and the optimal
values of the objective functions of the MCG and MEC subproblems. The UB2MCG upper
bound has not been implemented, since it requires a complete enumeration of all subsets
of faces, which is very expensive in practice. The UB2MEC upper bound needs to solve
(approximately or exactly) a maximum clique problem. For that, we use the LEMON library
[47], and in particular the implementation of an iterated local search algorithm proposed by
Grosso, Locatelli, and Pullan [48]. We recall that UB1MCG computes the differences between
the faces potential (sum of residual capacities of candidate sensors) and the coverage demand
of the crossing targets. UB1MCG reaches the optimal value for 94 % of the instances. When
the optimal value is not met, the gap is less than 2 %. On any case, UB2MEC dominates
UB1MEC, since UB2MEC is an improved version of UB1MEC. The upper bound UB2MEC

performs very well thanks to the bounds on the maximum clique problem. These bounds,
in particular for MEC, can be useful when the column generation algorithm cannot return
an optimal solution in a reasonnable time. The decision maker can also stop the algorithm
if solution quality is judged satisfactory.

m n MRC MCG MEC

50

5 11.2 % 30.4 % 58.4 %
10 11.8 % 33.4 % 54.8 %
15 12.8 % 29.5 % 57.7 %
30 7.2 % 23.0 % 69.8 %

100
5 9.3 % 27.6 % 63.1 %
10 7.5 % 27.6 % 64.9 %
15 7.2 % 25.5 % 67.3 %

150
5 7.3 % 23.1 % 69.5 %
10 6.3 % 25.1 % 68.6 %
15 6.9 % 23.5 % 69.6 %

Table 10: Average of percentages of CPU time for solving each subproblem

Table 10 shows the average percentage of CPU time spent for each subproblem. We
observe that the average time spent for MRC is less than 15 %. This is explained by the
fact that MRC is stopped as soon as the objective value is greater than or equal to zero.
More than half of the CPU time is spent for solving MEC. Moreover, since the upper bound
UB1MCG reaches optimality in 94 % of the instances, for MCG the algorithm is more likely
to be able to skip the ILP which is expensive in CPU time. The bounds for MEC being
slightly less efficient, this results in more time spent solving the ILP formulation for MEC.

6. Conclusion

In this paper, we addressed a wireless sensor network optimization problem with coverage
guarantee and target position uncertainty. The proposed method builds a schedule using a
two-phase algorithm. The discretization phase transforms the input data into a scheduling
problem instance. Target position uncertainty is handled during the discretization. The

25

scheduling problem is then decomposed into three subproblems solved using column gen-
eration. The three master problems are designed to share the same pricing problem and
to allow column reuse from a master problem to the one of the next subproblem. As a
consequence, the final set of columns of the previous suproblem is the input of the current
one. A GRASP metaheuristic complemented with a local search is proposed to accelerate
the column generation, the algorithm is then a matheuristic.

Numerical results show that the matheuristic approach reduces significantly the CPU
time compared to a classical column generation. The CPU time is even more reduced by
the instance size reduction procedure that performs best when the number of targets is large
and when target positions are uncertain.

As an extension of the problem investigated in this paper, we suggest to take communi-
cation costs into account. Indeed, wireless sensor networks are typically connected to a base
station in order to analyze the data collected by the sensors. Sending and routing the data
can drain energy from the sensor batteries. An idea could be to modify the pricing problem
to generate covers that include the communication paths.

Acknowledgements

We thank Direction Générale de l’Armement (DGA) for a financial support to this work.

References

References

[1] Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.. Wireless sensor networks:
a survey. Computer Networks 2002;38(4):393–422. doi:10.1016/s1389-1286(01)
00302-4.

[2] Yick, J., Mukherjee, B., Ghosal, D.. Wireless sensor network survey. Computer
Networks 2008;52(12):2292–2330. doi:10.1016/j.comnet.2008.04.002.

[3] Zhang, W., Cao, G.. DCTC: Dynamic convoy tree-based collaboration for target track-
ing in sensor networks. IEEE Transactions on Wireless Communications 2004;3(5):1689–
1701. doi:10.1109/twc.2004.833443.

[4] Handy, M., Haase, M., Timmermann, D.. Low energy adaptive clustering hierarchy
with deterministic cluster-head selection. In: 4th International Workshop on Mobile
and Wireless Communications Network. IEEE; 2002, p. 368–372. doi:10.1109/mwcn.
2002.1045790.

[5] Jindal, P., Gupta, V.. Study of energy efficient routing protocols of wireless sensor
networks and their further researches: a survey. International Journal of Computer
Science and Communication Engineering 2013;2:57–62.

26

http://dx.doi.org/10.1016/s1389-1286(01)00302-4
http://dx.doi.org/10.1016/s1389-1286(01)00302-4
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1109/twc.2004.833443
http://dx.doi.org/10.1109/mwcn.2002.1045790
http://dx.doi.org/10.1109/mwcn.2002.1045790

[6] Younis, O., Fahmy, S.. HEED: a hybrid, energy-efficient, distributed cluster-
ing approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing
2004;3(4):366–379. doi:10.1109/tmc.2004.41.

[7] Yang, H., Sikdar, B.. A protocol for tracking mobile targets using sensor networks.
In: Proceedings of the First IEEE International Workshop on Sensor Network Protocols
and Applications, 2003. IEEE; 2003, p. 71–81. doi:10.1109/snpa.2003.1203358.

[8] Xu, Y., Winter, J., Lee, W.C.. Prediction-based strategies for energy saving in
object tracking sensor networks. In: IEEE International Conference on Mobile Data
Management, 2004. Proceedings. 2004. IEEE; 2004, p. 346–357. doi:10.1109/mdm.2004.
1263084.

[9] Kung, H., Vlah, D.. Efficient location tracking using sensor networks. In: Wireless
Communications and Networking, 2003. WCNC 2003. 2003 IEEE; vol. 3. IEEE; 2003,
p. 1954–1961. doi:10.1109/wcnc.2003.1200686.

[10] Xie, Y., Tang, G., Wang, D., Xiao, W., Tang, D., Tang, J.. A fault-tolerant target-
tracking strategy based on unreliable sensing in wireless sensor networks. In: 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD
Forum. IEEE; 2012, p. 2116–2125. doi:10.1109/ipdpsw.2012.261.

[11] Laoudias, C., Michaelides, M.P., Panayiotou, C.G.. fttrack: Fault-tolerant tar-
get tracking in binary sensor networks. ACM Transactions on Sensor Networks
2014;10(4):1–28. doi:10.1145/2538509.

[12] Jin, Y., Ding, Y., Hao, K., Jin, Y.. An endocrine-based intelligent distributed
cooperative algorithm for target tracking in wireless sensor networks. Soft Computing
2014;19(5):1427–1441. doi:10.1007/s00500-014-1352-3.

[13] Mannan, M., Rana, S.B.. Fault tolerance in wireless sensor network. International
Journal of Current Engineering and Technology 2015;5(3):1785–1788.

[14] Oracevic, A., Ozdemir, S.. A survey of secure target tracking algorithms for wireless
sensor networks. In: 2014 World Congress on Computer Applications and Information
Systems (WCCAIS). IEEE; 2014,doi:10.1109/wccais.2014.6916628.

[15] Naderan, M., Dehghan, M., Pedram, H., Hakami, V.. Survey of mobile object track-
ing protocols in wireless sensor networks: a network-centric perspective. International
Journal of Ad Hoc and Ubiquitous Computing 2012;11(1):34–63. doi:10.1504/ijahuc.
2012.049283.

[16] Guo, W., Zhang, W.. A survey on intelligent routing protocols in wireless sensor
networks. Journal of Network and Computer Applications 2014;38:185–201. doi:10.
1016/j.jnca.2013.04.001.

27

http://dx.doi.org/10.1109/tmc.2004.41
http://dx.doi.org/10.1109/snpa.2003.1203358
http://dx.doi.org/10.1109/mdm.2004.1263084
http://dx.doi.org/10.1109/mdm.2004.1263084
http://dx.doi.org/10.1109/wcnc.2003.1200686
http://dx.doi.org/10.1109/ipdpsw.2012.261
http://dx.doi.org/10.1145/2538509
http://dx.doi.org/10.1007/s00500-014-1352-3
http://dx.doi.org/10.1109/wccais.2014.6916628
http://dx.doi.org/10.1504/ijahuc.2012.049283
http://dx.doi.org/10.1504/ijahuc.2012.049283
http://dx.doi.org/10.1016/j.jnca.2013.04.001
http://dx.doi.org/10.1016/j.jnca.2013.04.001

[17] Rault, T., Bouabdallah, A., Challal, Y.. Energy efficiency in wireless sensor networks:
A top-down survey. Computer Networks 2014;67:104–122. doi:10.1016/j.comnet.
2014.03.027.

[18] Wang, C., Thai, M.T., Li, Y., Wang, F., Wu, W.. Optimization scheme for sensor
coverage scheduling with bandwidth constraints. Optimization Letters 2008;3(1):63–75.
doi:10.1007/s11590-008-0091-8.

[19] Rossi, A., Singh, A., Sevaux, M.. Column generation algorithm for sensor coverage
scheduling under bandwidth constraints. Networks 2011;60(3):141–154. doi:10.1002/
net.20466.

[20] Carrabs, F., Cerulli, R., D’Ambrosio, C., Gentili, M., Raiconi, A.. Maximizing life-
time in wireless sensor networks with multiple sensor families. Computers & Operations
Research 2015;60:121–137. doi:10.1016/j.cor.2015.02.013.

[21] Castaño, F., Bourreau, E., Velasco, N., Rossi, A., Sevaux, M.. Exact approaches for
lifetime maximization in connectivity constrained wireless multi-role sensor networks.
European Journal of Operational Research 2015;241(1):28–38. doi:10.1016/j.ejor.
2014.08.013.

[22] Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.. An exact algorithm to
extend lifetime through roles allocation in sensor networks with connectivity constraints.
Optimization Letters 2016;doi:10.1007/s11590-016-1072-y.

[23] Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.. Extending lifetime through
partial coverage and roles allocation in connectivity-constrained sensor networks. IFAC-
PapersOnLine 2016;49(12):973–978. doi:10.1016/j.ifacol.2016.07.902.

[24] Singh, A., Rossi, A.. Group scheduling problems in directional sensor networks. En-
gineering Optimization 2014;47(12):1651–1669. doi:10.1080/0305215x.2014.982633.

[25] Lu, Z., Li, W.W., Pan, M.. Maximum lifetime scheduling for target coverage and
data collection in wireless sensor networks. IEEE Transactions on Vehicular Technology
2015;64(2):714–727. doi:10.1109/tvt.2014.2322356.

[26] Liu, H., Chu, X., Leung, Y.W., Jia, X., Wan, P.J.. General maximal lifetime
sensor-target surveillance problem and its solution. IEEE Transactions on Parallel and
Distributed Systems 2011;22(10):1757–1765. doi:10.1109/tpds.2011.42.

[27] Rossi, A., Sevaux, M., Singh, A., Geiger, M.J.. On the cover scheduling problem
in wireless sensor networks. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg; 2011, p. 657–668. doi:10.1007/978-3-642-21527-8_73.

[28] Gopinadh, V., Singh, A.. Swarm intelligence approaches for cover scheduling prob-
lem in wireless sensor networks. International Journal of Bio-Inspired Computation
2015;7(1):50. doi:10.1504/ijbic.2015.067987.

28

http://dx.doi.org/10.1016/j.comnet.2014.03.027
http://dx.doi.org/10.1016/j.comnet.2014.03.027
http://dx.doi.org/10.1007/s11590-008-0091-8
http://dx.doi.org/10.1002/net.20466
http://dx.doi.org/10.1002/net.20466
http://dx.doi.org/10.1016/j.cor.2015.02.013
http://dx.doi.org/10.1016/j.ejor.2014.08.013
http://dx.doi.org/10.1016/j.ejor.2014.08.013
http://dx.doi.org/10.1007/s11590-016-1072-y
http://dx.doi.org/10.1016/j.ifacol.2016.07.902
http://dx.doi.org/10.1080/0305215x.2014.982633
http://dx.doi.org/10.1109/tvt.2014.2322356
http://dx.doi.org/10.1109/tpds.2011.42
http://dx.doi.org/10.1007/978-3-642-21527-8_73
http://dx.doi.org/10.1504/ijbic.2015.067987

[29] Lee, C.T., Lin, F.Y.S., Wen, Y.F.. An efficient object tracking algorithm in wireless
sensor networks. In: Proceedings of the 9th Joint Conference on Information Sciences
(JCIS). Atlantis Press. ISBN 978-90-78677-01-7; 2006,doi:10.2991/jcis.2006.207.

[30] Yeong-Sung, F., Cheng-Ta, , Hsu, Y.Y.. An energy-efficient algorithm for object
tracking in wireless sensor networks. In: 2010 IEEE International Conference on Wire-
less Communications, Networking and Information Security. IEEE; 2010, p. 424–430.
doi:10.1109/wcins.2010.5544123.

[31] Atia, G.K., Veeravalli, V.V., Fuemmeler, J.A.. Sensor scheduling for energy-
efficient target tracking in sensor networks. IEEE Transactions on Signal Processing
2011;59(10):4923–4937.

[32] Shi, K., Chen, H., Lin, Y.. Probabilistic coverage based sensor scheduling for target
tracking sensor networks. Information Sciences 2015;292:95–110. doi:10.1016/j.ins.
2014.08.067.

[33] Chen, J., Cao, K., Li, K., Sun, Y.. Distributed sensor activation algorithm for target
tracking with binary sensor networks. Cluster Computing 2009;14(1):55–64. doi:10.
1007/s10586-009-0092-0.

[34] Ellison, R.J., Fisher, D.A., Linger, R.C., Lipson, H.F., Longstaff, T.. Survivable
network systems: An emerging discipline. Tech. Rep.; DTIC Document; 1997.

[35] Wang, L., Xiao, Y.. A survey of energy-efficient scheduling mechanisms in sen-
sor networks. Mobile Networks and Applications 2006;11(5):723–740. doi:10.1007/
s11036-006-7798-5.

[36] Wang, Y.S., Lin, F.Y.S., Chan, C.H., Wang, J.W.. Maximization of wireless mesh
networks survivability to assure service continuity under intelligent attacks. In: 2013
IEEE 27th International Conference on Advanced Information Networking and Appli-
cations (AINA). IEEE; 2013, p. 583–590. doi:10.1109/aina.2013.31.

[37] Pannetier, B., Dezert, J., Sella, G.. Multiple target tracking with wireless sensor
network for ground battlefield surveillance. In: FUSION 2014. SALAMANQUE, Spain;
2014,URL: https://hal-onera.archives-ouvertes.fr/hal-01070361.

[38] Lersteau, C., Rossi, A., Sevaux, M.. Robust scheduling of wireless sensor net-
works for target tracking under uncertainty. European Journal of Operational Research
2016;252(2):407–417. doi:10.1016/j.ejor.2016.01.018.

[39] Billaut, J.C., Moukrim, A., Sanlaville, E.. Flexibility and Robustness in Scheduling.
ISTE-Wiley publishing,London; 2008. ISBN 978-1-84821-054-7. URL: https://hal.
archives-ouvertes.fr/hal-00445442.

29

http://dx.doi.org/10.2991/jcis.2006.207
http://dx.doi.org/10.1109/wcins.2010.5544123
http://dx.doi.org/10.1016/j.ins.2014.08.067
http://dx.doi.org/10.1016/j.ins.2014.08.067
http://dx.doi.org/10.1007/s10586-009-0092-0
http://dx.doi.org/10.1007/s10586-009-0092-0
http://dx.doi.org/10.1007/s11036-006-7798-5
http://dx.doi.org/10.1007/s11036-006-7798-5
http://dx.doi.org/10.1109/aina.2013.31
https://hal-onera.archives-ouvertes.fr/hal-01070361
http://dx.doi.org/10.1016/j.ejor.2016.01.018
https://hal.archives-ouvertes.fr/hal-00445442
https://hal.archives-ouvertes.fr/hal-00445442

[40] Lersteau, C., Sevaux, M., Rossi, A., Cerulli, R., Raiconi, A.. Maximization of
residual capacities for target tracking in wireless sensor networks. In: International
Symposium on Combinatorial Optimization. 2016,.

[41] Ning, S.. Estimation of area of uncertainty for moving target tracking. In: Proceed-
ings 2013 International Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC). IEEE; 2013,doi:10.1109/mec.2013.6885196.

[42] Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.. Power efficient monitor-
ing management in sensor networks. In: 2004 IEEE Wireless Communications and
Networking Conference (IEEE Cat. No.04TH8733); vol. 4. IEEE; 2004, p. 2329–2334.
doi:10.1109/wcnc.2004.1311452.

[43] Slijepcevic, S., Potkonjak, M.. Power efficient organization of wireless sensor networks.
In: ICC 2001. IEEE International Conference on Communications. Conference Record
(Cat. No.01CH37240); vol. 2. IEEE; 2001, p. 472–476. doi:10.1109/icc.2001.936985.

[44] Boschetti, M.A., Maniezzo, V., Roffilli, M., Röhler, A.B.. Matheuristics: Optimiza-
tion, simulation and control. In: Hybrid Metaheuristics. Springer Berlin Heidelberg;
2009, p. 171–177. doi:10.1007/978-3-642-04918-7_13.

[45] Feo, T.A., Resende, M.G.C.. Greedy randomized adaptive search procedures. Journal
of Global Optimization 1995;6(2):109–133. doi:10.1007/bf01096763.

[46] Singh, A., Rossi, A., Sevaux, M.. Matheuristic approaches forQ-coverage problem
versions in wireless sensor networks. Engineering Optimization 2013;45(5):609–626.
doi:10.1080/0305215x.2012.687732.

[47] Dezső, B., Jüttner, A., Kovács, P.. LEMON – an open source c++ graph template
library. Electronic Notes in Theoretical Computer Science 2011;264(5):23–45. doi:10.
1016/j.entcs.2011.06.003.

[48] Grosso, A., Locatelli, M., Pullan, W.. Simple ingredients leading to very efficient
heuristics for the maximum clique problem. Journal of Heuristics 2007;14(6):587–612.
doi:10.1007/s10732-007-9055-x.

30

http://dx.doi.org/10.1109/mec.2013.6885196
http://dx.doi.org/10.1109/wcnc.2004.1311452
http://dx.doi.org/10.1109/icc.2001.936985
http://dx.doi.org/10.1007/978-3-642-04918-7_13
http://dx.doi.org/10.1007/bf01096763
http://dx.doi.org/10.1080/0305215x.2012.687732
http://dx.doi.org/10.1016/j.entcs.2011.06.003
http://dx.doi.org/10.1016/j.entcs.2011.06.003
http://dx.doi.org/10.1007/s10732-007-9055-x

Appendix A. Nonlinear model for MCG

We propose a mathematical formulation for MCG, denoted by NLMPMCG, and defined
by equations (A.1)-(A.10). The decision variables are as follows:

• dkc is the activity duration of the cover c ∈ C(k) during the time window k ∈ K

• ri is the residual capacity of sensor i ∈ I

• Tmin is the duration of the coverage guarantee

• xkic is equal to 1 if and only if sensor i ∈ I is part of cover c ∈ C(k) in time window
k ∈ K

max Tmin (A.1)∑
k∈K

∑
c∈C(k)

xkicd
k
c + ri = Ei ∀i ∈ I (A.2)

∑
c∈C(k)

dkc = ∆k ∀k ∈ K (A.3)

∑
i∈S(f)

ri ≥ Tmin ∀f ∈ F ∗ (A.4)

∑
i∈S(f)

xkic ≥ 1 ∀k ∈ K, ∀c ∈ C(k),∀f ∈ T (k) (A.5)

dkc ≤ dkc+1 ∀k ∈ K, ∀c ∈ C(k) \ {|C(k)|} (A.6)

Tmin ≥ 0 (A.7)

ri ≥ 0 ∀i ∈ I (A.8)

xkic ∈ {0, 1} ∀i ∈ I,∀k ∈ K, ∀c ∈ C(k) (A.9)

dkc ≥ 0 ∀k ∈ K, c ∈ C(k) (A.10)

Constraint (A.2) enforces that the battery capacity of each sensor is satisfied. Constraint
(A.3) enforces that the monitoring duration of each time window is equal to ∆k. Constraint
(A.4) defines Tmin as the coverage guarantee. Constraint (A.5) ensures that at least one can-
didate sensor is selected for monitoring each face. Constraint (A.6) is a symmetry breaking
inequality that may help the solver to converge faster.

Appendix B. MILP model for MCG

Because of constraint (A.5), model NLMPMCG is nonlinear. So we introduce ukic as a
new continuous variable for replacing xkicd

k
c . The model IMPMCG, defined by the equations

(B.1)-(B.14), is then a mixed integer linear program.

31

max Tmin (B.1)∑
k∈K

∑
c∈C(k)

ukic + ri = Ei ∀i ∈ I (B.2)

∑
c∈C(k)

dkc = ∆k ∀k ∈ K (B.3)

∑
i∈S(f)

ri ≥ Tmin ∀f ∈ F ∗ (B.4)

∑
i∈S(f)

xkic ≥ 1 ∀k ∈ K, ∀c ∈ C(k),∀f ∈ T (k) (B.5)

dkc ≤ dkc+1 ∀k ∈ K, ∀c ∈ C(k) \ {|C(k)|} (B.6)

ukic ≤ dkc ∀k ∈ K, ∀i ∈
⋃

f∈T (k)

S(f),∀c ∈ C(k) (B.7)

ukic ≤ Eix
k
ic ∀k ∈ K, ∀i ∈

⋃
f∈T (k)

S(f),∀c ∈ C(k) (B.8)

ukic ≥ ∆k(x
k
ic − 1) + dkc ∀k ∈ K, ∀i ∈

⋃
f∈T (k)

S(f),∀c ∈ C(k) (B.9)

Tmin ≥ 0 (B.10)

ri ≥ 0 ∀i ∈ I (B.11)

ukic ≥ 0 ∀i ∈ I,∀k ∈ K, ∀c ∈ C(k) (B.12)

xkic ∈ {0, 1} ∀i ∈ I,∀k ∈ K, ∀c ∈ C(k) (B.13)

dkc ≥ 0 ∀k ∈ K, c ∈ C(k) (B.14)

Constraint (B.2) is an updated version of constraint (A.2). Constraints (B.7) to (B.9)
are added for enforcing that ukic is equal to xkicd

k
c .

Appendix C. Computational results

Table C.11 compares the CPU time of solving IMPMCG and GRASP+ILP, which is the
most efficient column generation-based approach proposed in this paper. The comparison is
performed on small instances, where the number of sensors ranges from m = 20 to m = 40.
A time limit of 3600 seconds has been set for each instance. The CPU time is significantly
higher for the IMPMCG approach. Moreover, the fact that the time limit was reached on
several small instances shows the unstability of the IMPMCG approach.

In order to assess the computational effort required by solving IMPMCG, 30 instances
have been generated in the way described in Section 5, except that the instances have
m ∈ {20, 30, 40} sensors and n = 4 targets. These 30 instances are smaller than the minimum
size instances used in Section 5, but as can be seen in Table C.12, IMPMCG cannot be

32

m = 20 m = 30 m = 40
Instance IMPMCG CG IMPMCG CG IMPMCG CG

1 1.27 s 0.13 s 3.96 s 0.21 s > 3600 s 0.29 s
2 1.28 s 0.09 s 4.34 s 0.15 s 10.0 s 0.24 s
3 > 3600 s 0.14 s > 3600 s 0.08 s > 3600 s 0.18 s
4 0.86 s 0.11 s 2.50 s 0.18 s > 3600 s 0.24 s
5 0.92 s 0.07 s > 3600 s 0.14 s 59.8 s 0.19 s
6 0.49 s 0.10 s > 3600 s 0.27 s 5.72 s 0.23 s
7 0.80 s 0.09 s > 3600 s 0.19 s 8.15 s 0.29 s
8 0.68 s 0.11 s 3.17 s 0.19 s 9.69 s 0.27 s
9 1.06 s 0.09 s 3.37 s 0.12 s > 3600 s 0.27 s
10 0.92 s 0.15 s 203 s 0.19 s > 3600 s 0.27 s

Table C.11: Average CPU time of IMPMCG and GRASP+ILP on small instances

Number of sensors Number of instances solved to optimality (out of 10)
m = 20 9
m = 30 6
m = 40 5

Table C.12: Number of instances solved to optimality in less than one hour with IMPMCG

solved to optimality for all these instances, whereas the column generation-based approaches
introduced in this paper solves them all in less than one second. The number of instances
requiring more than one hour to solve is quickly increasing with instance size. As in [19], this
clearly shows the efficiency of column generation-based approaches compared to IMPMCG.

33

	Introduction
	Context
	Related work
	WSN for static targets
	WSN for target tracking
	Robustness for WSN
	Contribution and paper organization

	Preliminaries
	Notations
	Discretization
	Example
	Two particular cases where MCG and MEC can be solved in polynomial time
	Long-range sensors
	Short-range sensors

	Problem reduction

	Mathematical formulations
	MRC subproblem
	MCG subproblem
	MEC subproblem
	Bounds
	Bounds for MCG
	Bounds for MEC

	Solution approach
	Column generation algorithm
	Pricing problem
	Dual bounds

	Computational results
	Conclusion
	Nonlinear model for MCG
	MILP model for MCG
	Computational results

