
Received January 8, 2021, accepted January 11, 2021, date of publication January 19, 2021, date of current version February 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052945

Solving the Problem of Stacking Goods:
Mathematical Model, Heuristics and a Case
Study in Container Stacking in Ports
CHARLY LERSTEAU 1,2, TRUNG THANH NGUYEN 2, TRI THANH LE 3,
HA NAM NGUYEN 4, AND WEIMING SHEN 1, (Fellow, IEEE)
1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, U.K.
3Faculty of Information and Technology, Vietnam Maritime University, Haiphong 180000, Vietnam
4Information Technology Institute, Vietnam National University, Hanoi 100000, Vietnam

Corresponding author: Trung Thanh Nguyen (t.t.nguyen@ljmu.ac.uk)

This work was supported by the Newton Institutional Links through the U.K. BEIS under Grant 172734213.

ABSTRACT Stacking goods or items is one of the most common operations in everyday life. It happens
abundantly in not only transportation applications such as container ports, container ships, warehouses,
factories, sorting centers, freight terminals, etc., but also computing systems, supermarkets, and so on. We
investigate the problem of stacking a sequence of items into a set of capacitated stacks, subject to stacking
constraints. In every stack, items are accessed in the last-in-first-out order. So at retrieval time, getting any
lower item requires reshuffling all upper items that are blocking the way (called blocking items). These
reshuffles are redundant and expensive. The challenge is to prevent reshuffles from happening. For this
purpose, we aim at assigning items to stacks to minimize the number of blocking items with respect to the
retrieval order. We provide some mathematical analyses on the feasibility of this problem and lower bounds.
Besides, we provide a mathematical model and a two-step heuristic framework.We illustrate the applications
of these models and heuristic framework in the real cargo handling process in an Asian port. Experimental
results on real scenarios show that the proposed model can eliminate almost all reshuffles, and thus decrease
the number of stacking violations from 62.6 % to 0.9 %. We also provide an empirical analysis of variants
of the heuristic framework.

INDEX TERMS Combinatorial optimization, containers, heuristic algorithms, linear programming, logis-
tics, optimization methods, stacking.

I. INTRODUCTION
The problem of stacking goods/items (we call it the Stack
Loading Problem, abbreviated as SLP) arises in many appli-
cations such as container terminals, warehouses, factories,
supermarkets, computer memory, and so on. In these envi-
ronments, items (or goods) arrive in a given order and are
assumed to be loaded immediately in one or multiple stacks,
one item on top of another. The arrangement of items in the
stacks is called a configuration. These items can be retrieved
later but not necessarily in the same order as they arrive.
In many settings, the stacks can only be accessed from the
top. It means that if an item has to be retrieved before the
items above it, all the upper items, called blocking items, will

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Ching Ying .

have to be reshuffled. Similarly, if some of the loaded items
in the stacks violate stability, load-bearing, or other stacking
requirements (e.g. heavier items are on top of lighter ones),
reshuffles will also be needed. Besides, some applications
strictly forbid putting some items above some other items.
Such restrictions are called hard stacking constraints. For
example, they occur when lighter items cannot bear heavy
upper items, or when some items contain dangerous goods.

Reshuffles can lead to an excessive number of redundant
moves and a significant increase in cost and/or time. Take the
case of container terminals as an example. Published tariffs
from ports worldwide, e.g. Liverpool (Europe) [1], Portland
(America) [2] and Klang (Asia) [3] indicate that the cost
for a single reshuffle move can be very expensive, equal to
25-44 % the total cost of handling, storing and transporting
a container through all stages of the port. Given that 90 %

25330 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2948-6828
https://orcid.org/0000-0002-3268-1790
https://orcid.org/0000-0001-9322-8212
https://orcid.org/0000-0001-8714-7483
https://orcid.org/0000-0001-5204-7992
https://orcid.org/0000-0002-9549-5290

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

of the world’s dry/non-bulk manufactured goods are shipped
in ocean containers [4], container reshuffling in stacks is a
significant issue.

This paper attempts to minimize reshuffles in stacks by
minimizing the number of blocking items while making
sure that no item violates hard stacking constraints. It has
the following contributions: (1) Lemmas on the feasibil-
ity of the problem and lower bounds, (2) A mathematical
model which allows the problem to be solved to optimality,
(3) Applications of the proposed model on a real-world prob-
lem in an Asian port, showing a significant improvement in
stacking efficiency, (4) A two-step heuristic framework with
several variants, (5) An empirical analysis of these variants.
Please note that the newly proposed model can be seen as an
extension of already existing models such as [5].

A. RELATED WORK
In a comprehensive survey, Lehnfeld and Knust [6] gave
a classification scheme of stacking problems in three cat-
egories: loading, pre-marshalling, and unloading problems.
The problem investigated in this paper is a loading problem
according to the classifications from [6]. Using the three-field
notation detailed in [6], our problem can be denoted by
L|π in,sij|BI, where BI is an objective function defined in
Section II. In this section, we provide a literature review of
related works.

Kim et al. [5] proposed IPmodels and heuristics for relaxed
versions of SLP, i.e. without hard stacking constraints and
stack height limit. They tackle two cases: when reshuffled
items are pushed back to their stack of origin, and when
they are not. Boysen and Emde [7] tackled another relaxed
SLP, called PSLP. The objective is to minimize the num-
ber of blockages, i.e. the number of pairs of adjacent items
such that the upper item blocks the lower one. They pre-
sented IP models, a dynamic programming procedure, and
two heuristics. Boge and Knust [8] further studied several
objective functions for the PSLP: the number of blockages,
the number of blocking items, and the number of reshuffles.
Whereas the arrival order of items is imposed and reshuf-
fles are forbidden, the PSLP does not include hard stack-
ing constraints, i.e. arbitrarily imposing that an item cannot
be put above another one. As solution methods, MIP for-
mulations and a simulated annealing algorithm were given.
Bruns et al. [9] presented complexity results on several load-
ing problems. One of them consists in minimizing the number
of unordered stackings with hard stacking constraints but
assuming that each stack cannot store more than two items.
They proved that the latter can be solved in polynomial time.
Delgado et al. [10] proposed an integer and a constraint
programming models to optimize a weighted sum of four
objectives, including the number of blocking items. However,
they assumed that the arrival order of items is not imposed.
Parreño et al. [11] extended the previous problem to han-
dle items transporting dangerous goods and an additional
objective. Olivares et al. [12] analyzed the sensitivity of
three stacking strategies (horizontal, vertical, and diagonal) to

minimize the number of reshuffles when items arrive ran-
domly at the storage area. They extended the analysis given
in [13] concluding that the diagonal stacking strategy results
in fewer reshuffles. In their experiments, horizontal stacking
yielded the best performance but was sensitive to every factor
studied.

The following related works deal with uncertainty.
Kim et al. [14] distinguished three groups of items corre-
sponding to retrieval priorities and assumed that the group
of incoming items is not known in advance. They described
a dynamic programming model based on the probability of
the group of the next arriving item, to minimize the expected
number of reshuffles. Zhang et al. [15] showed that the
previous model contained an error and gave a correction.
Kang et al. [16] solved a similar problem by simulated
annealing, where the probability distribution of retrieval of
items is available from past statistics. Olsen and Gross [17]
gave an online heuristic to use as few stacks as possi-
ble with hard stacking constraints, assuming that the stack-
ing restrictions of the next incoming items are unknown.
Goerigk et al. [18] tackled a robust loading problem under
stacking and payload constraints, where the item weights
are subject to uncertainty. Exact and heuristic approaches
were developed. Le and Knust [19] aimed at minimizing
the number of used stacks under uncertain stacking con-
straints and proposed several formulations as mixed-integer
programs.

Although much research has been made on optimizing
stacking problems, loading problems have still attracted little
attention in the literature [6]. Hard stacking constraints and
stack height limits occur frequently in real-world applications
such as container terminals. To the best of our knowledge,
the loading problem including the latter constraints has not
been extensively studied.

B. ORGANIZATION
In Section II, we provide our formal description of the prob-
lem, and we study the properties. Section III provides a math-
ematical model. Section IV describes a heuristic framework
and its variants for solving the problem. Experimental results
are discussed in Section V. Finally, Section VI concludes this
paper.

II. PROBLEM DESCRIPTION
The problem investigated in this paper is named as Stack
Loading Problem (SLP). A sequence of incoming items has to
be put in a given order in the storage area arranged as stacks.
The objective is to reduce the unloading effort afterward,
by minimizing the number of blocking items with respect to
their retrieval order while satisfying the stacking constraints.
In this section, we give a formal definition.

A. DEFINITIONS
Let I = {1, . . . , n} be a set of items, M = {1, . . . ,m}
be a set of stacks defining the storage area. Each stack can
store at most b items. The set of items is partitioned into two

VOLUME 9, 2021 25331

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

TABLE 1. Problem input.

subsets Ifix and I in. Ifix is the set of initial items indexed
from 1 to |Ifix| and placed beforehand in the storage area.
I in is the set of incoming items indexed from |Ifix| + 1 to n.
When unspecified, we consider that Ifix = ∅ and I in = I
by default. The position of each initial item is represented
by a coordinate (k, h), where k is the stack index and h the
position of the item in stack k (e.g. h = 0 for bottommost
items). We index initial items in a stack in increasing order
of their position h. We also define an array kfix whose ele-
ment kfixi represents the stack of item i. Thus, the order of
initial items in a stack is implicitly defined from their item
indices. Incoming items arrive at the storage area one after
another, in increasing order of their indices. So the ingoing
sequence of items is (1,2,. . . ,n). In addition, reshuffles are
forbidden. Thus, an item i will never be put above another
item j if i < j. Besides, we need additional constraints
to determine whether item i can be put above item j when
i > j. We define two n × n binary matrices (rij) and (sij)
expressing respectively soft and hard stacking constraints as
follows:

• rij =

{
1 if item i will be retrieved after item j
0 otherwise

• sij =

{
1 if item i can be stacked above item j
0 otherwise

Then the binary matrix (rij) describes also the outgoing order
of items. A pair of items may verify rij = rji = 0, e.g.
if they have equal retrieval times. In this case, these items
can be retrieved in any order and are not blocking each other.
Soft and hard stacking constraints may define a total order
when the matrices are built by comparison of times, weights,
or sizes. For example, a commonly used hard stacking con-
straint is that larger and/or heavier items cannot be put above
smaller and/or lighter ones. Stacking constraints induced by
specific item conflicts may lead to an arbitrary structure. For
example, items containing hazardous contents may not be
stacked together or may not be stackable with some other
items. Note that our constraints apply regardless of whether
items are vertically adjacent or not. When sij = 0, item i
cannot be put above item j in the same stack even if items i and
j are not adjacent. Moreover, since reshuffles are forbidden,
if item i arrives after item j, sij = 0 ensures that items i
and j are located in different stacks. Table 1 summarizes the
necessary input. Loading an incoming item to a stack is called
a placement. Moving an existing item from a stack to another
is called a reshuffle and is not allowed at loading time. An
item i is said to be blocking if it is stacked above another item
j for which rij = 1.

B. ASSUMPTIONS
SLP has the following assumptions.

A1: There are m stacks of capacity b.
A2: An initial configuration (could be empty) is known in

advance.
A3: Items in a stack are accessed in the last-in-first-out

order.
A4: Items can only be put on top of a stack that can be either

already loaded or empty.
A5: Incoming items have to be put to the stacks in the order

of their arrival, which is indicated by their index.
A6: No item leaves the storage area at loading time.
A7: Items are subject to hard stacking constraints (sij).
A8: Reshuffles are forbidden at loading time.

C. OBJECTIVE
The motivation of our work is to reduce the number of
reshuffles at retrieval (unloading) time. However, we choose
a surrogate objective function, minimizing the number of
blocking items, for the following reasons. First, evaluat-
ing the exact minimum number of reshuffles may be very
time-consuming on large instances, since it requires to solve a
Blocks Relocation Problem, which is NP-hard [20]. Second,
the number of blocking items is a valid lower bound on the
number of required reshuffles. Indeed, every blocking item is
to be reshuffled at least once. Finally, the expected minimum
number of reshuffles converges to the expected number of
blocking items, as shown in [21]. Note that given an arbi-
trary configuration, a methodology was proposed in [22] to
estimate the expected number of reshuffles, but we cannot
use it since it assumes that the retrieval order of items is
unknown. In SLP, the objective is to minimize BI , the number
of blocking items in the final configuration. Note that BI
was proposed in [5], [10], [11], referred to as the number of
overstows or shifts.

Apart from BI , USadj can also be considered as a surrogate
objective function for minimizing the number of reshuffles.
USadj counts every pair of adjacent items for which the upper
item blocks the lower one [7]. Figure 1 shows an arbitrary
configuration where items are numbered by their retrieval
time and shaded items represent blocking items. Item 4 is
blocking both items 2 and 3. Items 7 and 8 are blocking item
6. In this example, the two objective functions have different
values. Since item 7 is not adjacent to item 6, this is not
counted in USadj, even if item 7 requires a reshuffle. Both BI
and USadj give a lower bound on the number of reshuffles, but
the former is stronger than the latter. This example illustrates
the relevance of choosing BI as our objective function.

D. SOLUTION REPRESENTATION
A solution of SLP is expressed as a sequence of stacks
(k1, . . . , kq) where kj is the stack in which the jth incoming
item is placed. Thus, a feasible solution of SLP consists of
any assignment of items to stacks satisfying the maximum
stack height (b) and hard stacking constraints (sij).

25332 VOLUME 9, 2021

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

FIGURE 1. A stack configuration where BI and USadj have different
values.

FIGURE 2. An optimal solution of SLP.

E. EXAMPLE
We consider a small instance with n = 8 items and m = 3
stacks of capacity b = 3. Each item i is associated with
a retrieval time di and a weight wi. The retrieval times are
defined by the vector d = (5, 4, 6, 1, 7, 8, 3, 2) and the
weights by w = (8, 4, 2, 5, 7, 1, 6, 3), both ordered with
respect to the item indices.We define for every pair (i, j) ∈ I2,
rij = 1 if di > dj, 0 otherwise. Moreover, we assume that a
heavier item cannot be put above a lighter one. Consequently,
we set sij = 1 ifwi ≤ wj, 0 otherwise. Figure 2 shows an opti-
mal solution for SLP with BI = 2. On each item, the smaller
number in the upper-left corner shows the index of the item.
The left and right numbers are respectively the retrieval time
and the weight. Shadowed items represent blocking items in
the final configuration. An optimal solution for this instance
of SLP is (1, 2, 2, 1, 3, 2, 3, 3).

F. CONFLICT GRAPHS
One can visually represent hard stacking constraints of SLP
as an undirected graph Gs = (V ,Es) called s-conflict graph.
The latter is constructed as follows. A vertex is created in V
for each item in I . Without loss of generality, assume that
i < j. Two distinct vertices i and j are adjacent if items i and j
cannot be placed in the same stack, i.e. sji = 0. Similarly,
we construct a r-conflict graph, where vertices i and j are
adjacent if rji = 0. We also introduce the undirected graph
Grs = (V ,Ers) called rs-conflict graph, where two vertices i
and j are adjacent inGrs if their corresponding items cannot be
stacked together (sji = 0), or one is going to block the other if
put in the same stack (rji = 1). Figure 3 illustrates a s-conflict
graph and a rs-conflict graph built from the previous example.
Such representations are helpful for the implementation of the
algorithm presented in Section IV to compute the degree of
the nodes.
Lemma 1: SLP is strongly NP-hard.
SLP without hard stacking constraints has been proven

strongly NP-hard in [8]. Using the latter fact, the proof for
Lemma 1 is trivial.

FIGURE 3. Conflict graphs (numbers are item indices).

Lemma 2: Let C be the largest clique in Gs. If the number
of stacks m < |C|, then SLP is infeasible.

Proof: Suppose that C = {i1, . . . , im+1} of size m + 1.
By definition ofGs = (V ,Es), for any pair (i`, i`′) ∈ Es, items
i` and i`′ cannot be stacked together. Therefore, the m + 1
items contained in C must be placed in distinct stacks. As
we have only m stacks, one item cannot be placed without
violating stacking constraints. �
Given the s-conflict graph from Figure 3, the size of the

largest clique is 3. Thus, our example requires at least 3 stacks
to admit a feasible solution. Note that the largest clique can be
found in polynomial time on perfect graphs [23]. When hard
stacking constraints are defined by comparison of weights,
they produce a comparability graph, which is also a perfect
graph.
Lemma 3: Let C be a clique in Grs containing |C| > m

vertices. Then |C| − m is a lower bound on the number of
blocking items.

Proof: Consider a cliqueC ofGrs of size greater thanm.
Without loss of generality, we assume that i < j. By definition
ofGrs, any pair (i, j) of items belonging toC are incompatible,
i.e. cannot be stacked together (sji = 0), or onemust block the
other when put in the same stack (rji = 1). Any subset S ⊆ C
put in the same stack, either is infeasible (at least one pair
satisfies sji = 0), or causes at least |S|−1 blocking items (all
the items in S except the bottommost one must be blocking).
Suppose that a partition of C = {S1, S2, . . . , Sm} exists such
that every subset Sk is feasible. Then the number of blocking
items is at least

∑m
k=1(|Sk | − 1) = |C| − m. �

Given the rs-conflict graph from Figure 3, one can observe
a clique of size 5, composed of items 2, 3, 4, 5, and 6. Thus,
a lower bound onBI is 5−3 = 2. Lemma 3 can be generalized
by consideringmultiple independent largest cliques instead of
one.
Lemma 4: Let C1,C2, . . . ,Cq be q cliques in Grs, such

that ∀u ∈ {1, . . . , q}, |Cu| > m, and ∀v ∈ {1, . . . , q} \ {u},
Cu ∩ Cv = ∅. Then

∑q
u=1 |Cu| − qm is a lower bound on the

number of blocking items.
Proof: From Lemma 3, we know that for each u ∈

{1, . . . , q}, |Cu| − m is a lower bound on the number
of blocking items. All cliques Cu are independent, they
do not share any item in common. Therefore, the sum∑q

u=1 (|Cu| − m) is a lower bound on the number of blocking
items. �

VOLUME 9, 2021 25333

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

III. MATHEMATICAL MODEL
In this section, we present a 0-1 linear programming model
for SLP. In some contexts such as container terminals,
the decision-maker may require a way to stack containers,
i.e. a sequence of placements, even if there exists no feasi-
ble solution. To do so, we propose a model allowing hard
constraint violations in the case of infeasibility. However,
whereas this model gives a solution even in the case of
infeasibility, the optimal solutions are preserved when the
instance is feasible. An item i is said to be violating if it
is stacked above another item j such that sij = 0. When
an instance is infeasible, solving the model SLP results in a
sequence of moves minimizing the number of violating items
first, then the number of blocking items. The proposedmodel,
called SLP, is defined by equations (1)–(7) and includes the
following binary variables:

xik =

{
1 if item i is located in stack k
0 otherwise

yi =

{
1 if item i is a violating item
0 otherwise

zi =

{
1 if item i is a blocking item
0 otherwise

a: SLP

min
∑
i∈I

zi + n
∑
i∈I

yi (1)

s.t.
∑
k∈M

xik = 1 ∀i ∈ I (2)∑
i∈I

xik ≤ b ∀k ∈ M (3)

xik + xjk ≤ 1+ zi
i ∈ I , j ∈ I , k ∈ M : i > j, sij = 1, rij = 1 (4)

xik + xjk ≤ 1+ yi
i ∈ I , j ∈ I , k ∈ M : i > j, sij = 0 (5)

xik ∈ {0, 1} ∀i ∈ I , k ∈ M (6)

yi, zi ≥ 0 ∀i ∈ I (7)

The objective is to minimize the number of violating items
first, then the number of blocking items. Since the latter is
upper-bounded by n − m when n ≥ m (bottommost items
are non-blocking), multiplying the former by n guarantees
that the number of violating items is minimized in priority.
The purpose of this additional objective is to penalize infea-
sibility. Thus, a feasible solution will always dominate any
solution having violating items. Note that to forbid returning
a configuration in case of infeasibility, one can force yi = 0.
Constraint (2) ensures that each item belongs to exactly one
stack. Constraint (3) guarantees that the number of items
in a stack does not exceed the maximum capacity b. Con-
straint (4) enforces zi = 1 if the item i is blocking another
item j. Constraint (5) ensures that hard stacking restrictions
are satisfied or enforces yi = 1 if item i is a violating item.

Algorithm 1: Framework

s∗← ∅
while stopping criterion not met do

s← Construct()
if s is feasible then

s← Improve(s)
if s∗ = ∅ or BI(s) < BI(s∗) then

s∗← s

return s∗

Algorithm 2: Construct

si← ∅, ∀i ∈ I
J ← Sort(I)
foreach i ∈ J do

k ← Select(i,s)
if k = ∅ then

k ← Repair(i,s)

si← k

return s

Variables yi and zi can be set as continuous since they are
minimized and bounded by binary variables. The number of
variables is mn+ 2n and the number of constraints is at most
n + m + mn2. In case Ifix = ∅, we can enforce xik = 0 for
each i > k to reduce the search space. Indeed, when there are
several empty stacks, there is no difference in choosing one
or another of them since they are equivalent choices. When
Ifix 6= ∅, the values of xik are enforced for all i ∈ Ifix and
k ∈ M , i.e. xik = 1 if k = kfixi , xik = 0 otherwise.
Since reshuffles are not allowed at loading time, items are

stacked by their order of arrival, so the ordering is implicitly
defined by item indices. In particular, if items i and j are in
the same stack, then item i is located above item j if i > j.

IV. HEURISTIC FRAMEWORK
In this section, we define the framework for solving SLP.
This is an iterative method, where each iteration consists of
two phases: a construction phase and an improvement phase.
This intuitive design, illustrated byAlgorithm 1, is commonly
proposed inmetaheuristics, such as GRASP [24]. Ourmethod
generalizes the method presented in [5] and the First Fit
rule from [7] by using a sorting rule, a parameterizable rule
and taking into account hard stacking constraints as well
as a maximum stack height. It terminates when a stopping
criterion is met, such as a maximum number of iterations N
or a time limit.

A. CONSTRUCTION PHASE
The construction phase, formalized in Algorithm 2, builds a
feasible solution for SLP in two steps: a sorting step and a
selection step. First, incoming items are sorted by a specified
criterion to determine in which order we assign them to
stacks. Second, we select a stack for each item, one after

25334 VOLUME 9, 2021

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

FIGURE 4. Insertion points (numbers are arrival times).

another, according to a given rule. Moreover, if there is no
feasible stack available for a given item, we attempt to repair
the solution by moving incompatible items. Consequently,
the solution is not necessarily built in the so-called first-in
last-out manner, where items are assigned to stacks in the
order of arrival. Figure 4 illustrates how to assign items to
stacks in an arbitrary order while respecting the validity of the
configuration. In this example, six items numbered by arrival
time have already been assigned to stacks by the construction
algorithm. To respect the arrival order, the next items must be
located above items arriving earlier and below items arriving
later. Thus, the only candidate locations for item 4 are the
red insertion points shown in Figure 4. Note that when there
exists more than one empty stack, only the onewith the lowest
index is considered as a candidate and others are ignored.

Our algorithm can easily take into account the case Ifix 6=
∅ by setting in advance all the values of si where i ∈
{1, . . . , |Ifix|} i.e. are already placed items. Then in the fol-
lowing steps, the latter values of si must be fixed.

1) SORTING STEP
The order of items can heavily impact the decisionsmade dur-
ing the selection step. In this paper, we study three different
orders:
• LIFO: by increasing arrival time
• FIFO: by decreasing arrival time
• DEG: by decreasing degree in the conflict graphs

The LIFO order is equivalent to the common last-in first-out
construction. The FIFO order is equivalent to the first-in first-
out construction, i.e. appending every next item at the bottom
of the stacks, like in a queue. The idea behind the DEG order
is to increase the chance of obtaining a feasible solution by
treating themost conflicting items first. To do so, we order the
items by decreasing degree in the s-conflict graph (described
in Section II). Items that have the same degree in the latter
graph are ordered by decreasing degrees in the r-conflict
graph. When two items have the same degree in both graphs,
we choose first the one with the earliest arrival time.

2) SELECTION STEP
During the selection step, we assign a stack to each item,
one after another, according to a specified rule. Note that the
latter rule must select a feasible stack, i.e. satisfying hard
stacking and maximum stack height constraints. We study
three rules based on the same principle: select a feasible stack
in such a way that the number of additional blocking items is
minimized. Such a stack is called a candidate stack. Though,

FIGURE 5. Selection probabilities.

there may be several candidate stacks. Assume that set of
candidate stacks C is arranged from left to right, the leftmost
having the index 1 and the rightmost having the index |C|. To
break ties, we propose these three selection rules illustrated
in Figure 5:
• FIRST: always choose the leftmost stack. This is identi-
cal to the First Fit rule from [7].

• UNIFORM: choose a stack randomly with equal proba-
bilities (discrete uniform distribution).

• GEO: choose a stack randomly with decreasing proba-
bilities from leftmost stack to rightmost stack. To do so,
we define a geometric distribution with finite support.

The purpose of GEO is to provide a tradeoff between FIRST
and UNIFORM to control the randomness of the selection
while selecting leftmost stacks in priority. Since C has a
finite size, we define a geometric distribution with finite
support as follows. Let q ∈ [0, 1] be a user-defined parameter,
the probability of selecting ` ∈ C is:

P(X = `) = pq`−1 ∀` ∈ C (8)

To obtain a valid probability distribution, we need to
define:

p =
1− q

1− q|C|

The value of q determines how the selection probability
decreases from a stack to its right neighbor. When q gets
closer to 0, then the chances to select the leftmost stacks are
higher. Inversely, when q gets closer to 1, the probability dis-
tribution is closer to a uniform distribution. For the particular
cases q = 0 and q = 1, we assume that GEO is equivalent to
FIRST and UNIFORM, respectively.

The efficiency of the construction phase is crucial since
it may significantly impact the overall computational time.
Indeed, solutions that are far from a local optimum may
require a significant effort during the improvement phase.

3) REPAIR MECHANISM
In some cases, the selection step fails, because every stack is
full or contains at least one incompatible item. Our algorithm
solves this issue by running a repair mechanism. The goal
of the Repair function (in Algorithm 2) is to make a stack
available for item i by moving items causing infeasibility. Let
i be the current item to assign. For each stack k , we get the set
of items Ii(k) incompatible with i. Next, we try to move items
of Ii(k) altogether in every feasible stack ` 6= k . We select
the stack leading to the minimum number of blocking items.

VOLUME 9, 2021 25335

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

Algorithm 3: Local Search

repeat
s← One-opt(s)
if no improvement then

s← Two-opt(s)

until no improvement
return s

In case of ties, we select the leftmost stack. When all feasible
pairs (k, `) have been enumerated, the Repair function
chooses the first pair (k∗, `∗) having the minimum number of
blocking items and blocked items, lexicographically. Finally,
items of Ii(k∗) are moved to stack `∗, so item i can be
assigned to stack k∗.

B. IMPROVEMENT PHASE
A feasible solution obtained from the construction phase
might be further improved by local search. This procedure
starts from a given solution s and attempts to move to a neigh-
bor solution iteratively. The neighborhood N (s) determines
the search space reachable from s. In this paper, we define
N (s) as the set of feasible solutions that can be obtained by
applying a k-reassignment (k ≥ 1) on s, i.e. a reassignment
of k distinct items to different stacks. When there exists
no reassignment able to improve the solution, then it is a
local optimum. Kim et al. [5] suggested two neighborhoods,
denoted by one-opt and exchange in this paper.

A one-opt search attempts to apply a 1-reassignment in
such a way that the number of blocking items BI is reduced.
To do so, it explores all the feasible 1-reassignments and
chooses the one that results in the best improvement. Among
several equal best candidates, the stack is randomly selected
with equal probabilities.

We extend this one-opt search by considering an additional
objective: the number of blocked items bi. Then BI and bi
are minimized lexicographically. When two reassignments
result in the same value of BI , the one with the smallest bi
is preferred. In addition, a solution is considered as a local
optimum only when neither BI nor bi can be improved. This
extended version of one-opt is called one-opt+.

Similarly, a two-opt search attempts to apply improving
2-reassignments. In this paper, the 2-reassignments are not
limited to exchanges of items. For example, a first item
located in the stack k may be reassigned to a stack `, and
a second item located in the stack ` may be reassigned to a
stack `′ 6= k . The extended version of two-opt considering bi
as a secondary objective is denoted by two-opt+.

An exchange search is a restricted version of two-opt that
only attempts to swap items. We denote it by exchange+
when considering bi as a secondary objective.
All the above search procedures break ties by random

selection with equal probabilities.
The local search procedure described in Algorithm 3

applies one-opt until no more improvement is found. In this

case, it attempts to perform a two-opt search. If an improve-
ment is found, it retries to perform a one-opt search again, and
so on. The algorithm stops when the current solution cannot
be improved by either one-opt or two-opt.

C. IMPLEMENTATION
In practice, a naive implementation of the local search leads
to significantly higher computational times than necessary.
We identified two ways to reduce effort without missing
solutions:

• Skip redundant 2-reassignments.
• Store additional information with the current solution.

1) SKIPPING REDUNDANT 2-REASSIGNMENTS
During the two-opt search, it is not necessary to check
all the 2-reassignments. Indeed, it is easy to see that one
2-reassignment equivalent to two improving 1-reassignments
can be skipped since such a reassignment should be found
during a one-opt search. In fact, only the 2-reassignments in
which items share common (origin or destination) stacks are
non-redundant.

Let s be the current solution where si denotes the stack
assigned to item i. Let i1 and i2 be a pair of distinct items to be
reassigned to stacks k1 and k2 respectively. We assume k1 6=
si1 and k2 6= si2 . A 2-reassignment {(i1, k1), (i2, k2)} is said
non-redundant if it satisfies at least one of these equations:

• si1 = si2 (same origin)
• k1 = k2 (same destination)
• k2 = si1 (destination of i2 = origin of i1)
• k1 = si2 (destination of i1 = origin of i2)

Whereas a naive two-opt search would explore up to (m−1)2

choices for each pair (i1, i2), the number of non-redundant
choices can be significantly smaller. Lemma 5 shows that
non-redundant 2-reassignments for a given pair of items can
be explored in linear time by the two-opt search.
Lemma 5: When si1 6= si2 , the number of non-redundant

2-reassignments of items i1 and i2 is at most 3m− 5.
Proof: There exist a total of m− 1 destination stacks k1

for item i1, since an item is not reassigned to its origin stack.
Then we distinguish two cases. If k1 = si2 (the destination
of i1 is the origin of i2), then there are m − 1 non-redundant
possibilities for k2. Otherwise, if k1 6= si2 , there exist m − 2
possibilities for k1, and only two non-redundant possibilities
for k2: either k2 = k1 or k2 = si1 . Therefore, the number of
non-redundant moves is 1× (m−1)+ (m−2)×2 = 3m−5.

�

2) STORING ADDITIONAL INFORMATION
The number of blocking items in a solution (k1, . . . , kn), with-
out any additional information, can be evaluated inO(n2) iter-
ations. Since the number of evaluations may be large during
the local search, it may be convenient to evaluate a solution in
O(1) iterations. So we suggest to store BI and bi as variables
as well as two vectors u and v of size n. We denote by ui the
number of items blocked by item i, and vi the number of items

25336 VOLUME 9, 2021

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

Algorithm 4: Remove an Item i From a Stack k
J ← {j ∈ I |(i > j and sij = 1 and rij = 1) or (i < j
and sji = 1 and rji = 1)}
foreach j ∈ J: Sj = k do

if i > j then
ui← ui − 1
vj← vj − 1
if ui = 0 then

BI← BI− 1

if vj = 0 then
bi← bi− 1

else
uj← uj − 1
vi← vi − 1
if uj = 0 then

BI← BI− 1

if vi = 0 then
bi← bi− 1

blocking item i. For each item placement or reassignment,
BI , bi, u and v need to be updated. This requires O(n) itera-
tions (instead of O(1) previously), as shown in Algorithms 4
and 5. In our implementation, we observed empirically that
the number of item placements/reassignments was approxi-
mately twice the number of evaluations, considering one-opt
and two-opt searches. However, the overall complexity is still
significantly reduced since the solutions are now evaluated in
O(1) instead of O(n2).

V. EXPERIMENTAL RESULTS
A. PRELIMINARY ANALYSIS
For a preliminary experiment, it is interesting to see how
the number of items and the number of stacks of random
instances can influence computational times. In order to
obtain a landscape of random instances, we generated the
heatmap of Figure 6 as follows. Given a number of items
n and a number of stacks m, we generated 20 instances on
the fly with retrieval times and weights defined as a random
permutation in {1, . . . , n}, and no maximum stack height.
The SLP model was run on these instances with CPLEX
12.9.0 configured with a time limit of 5 seconds. This pro-
cess has been done for all n ∈ {4, . . . , 250} and m ∈
{3, . . . , n− 1}. In Figure 6, the color of each pixel represents
the total computational time obtained for the 20 instances
corresponding to a given (n,m) pair. A white pixel means that
the computational time was close to zero, whereas a black
pixel means that the time limit of 5 seconds was reached for
all the 20 instances. The heatmap suggests that almost all the
instances above the red line of Equation n = 3m were trivial.
Indeed, a larger number of stacks allows smaller stacks and
therefore a smaller probability of having blocking items and
violating stacking constraints. On the other hand, finding a

Algorithm 5: Insert an Item i in a Stack k
J ← {j ∈ I |(i > j and sij = 1 and rij = 1) or (i < j
and sji = 1 and rji = 1)}
foreach j ∈ J: Sj = k do

if i > j then
if ui = 0 then

BI← BI+ 1

if vj = 0 then
bi← bi+ 1

ui← ui + 1
vj← vj + 1

else
if uj = 0 then

BI← BI+ 1

if vi = 0 then
bi← bi+ 1

uj← uj + 1
vi← vi + 1

FIGURE 6. Heatmap of computational times.

feasible solution is likely to be more difficult for instances
having fewer stacks.

B. METHODOLOGY
We performed our next experiments on instances from two
data sets.

The first data set (random) is made of randomly generated
instances. The random dataset is itself split into two sub-
sets: (T) instances having stacking constraints following a
total order, and (A) instances having an arbitrary structure.
We generated instances with n ∈ {100, 200} items, m ∈
{25, 30, 35} stacks for n = 100 and m ∈ {50, 55, 60} stacks

VOLUME 9, 2021 25337

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

TABLE 2. Size of instances in each block (real dataset).

TABLE 3. Feasibility rate (in %), repair enabled.

for n = 200; b = 5 and Ifix = ∅. Note that these parameters
were chosen to cover the gap between easy and hard instances
according to the heatmap of Figure 6, while avoiding infea-
sible instances. We created 10 instances for a selection of
combinations of parameters, totalizing 120 instances, as fol-
lows. In (T) instances, each item i is associatedwith a retrieval
time di ∈ {1, . . . , n} and a weight wi ∈ {1, . . . , n} randomly
permutated in {1, . . . , n}. The retrieval order (rij) is defined
by rij = 1 if di > dj, 0 otherwise. Hard constraints (sij) are
defined by sij = 1 if wi ≤ wj, 0 otherwise. In (A) instances,
(rij) and (sij) are randomly generated matrices where each
cell is either 0 or 1 with both probabilities of 1

2 . Note that
setting sij to 1 with a probability close to 1 would lead in
significantly easier instances. On the other hand, a probability
close to 0 would make instances infeasible most of the time.
Similarly, too homogeneous rij values may not be relevant.
Thus, we choose a probability of 1

2 as a reasonable tradeoff.
The second data set (real) was produced from the real

data courtesy of a port in Asia. The port’s yard is organized
into independent sets of stacks called blocks, each is served
by one gantry crane. For compatibility reasons, we selected
blocks that hosted more than 96 % of containers of the same
size (either 20′ or 40′) for the experiments, since the case
where both 20′ and 40′ containers are stored in the same
block is not supported by our models. For each selected
block, we obtained historical data covering one year and a
half, which includes arrival times, retrieval times, weights,
and the chosen stack. The whole period was partitioned into
alternating loading and unloading sessions, in which only
consecutive arrivals or retrievals occurred, respectively. After
each session, items remaining in the stacks become the initial
items of the next session. Taking the configuration of the
previous retrieval session as inputs, each loading session is
solved by the models to find the optimal configuration, and
the process goes on. The sizes of the instances (in terms of the
number of incoming items) are grouped by range in Table 2.

The SLP model was implemented with the CPLEX C++
library version 12.9.0. The heuristic algorithms were imple-
mented in C++. The real dataset and the random dataset with

FIGURE 7. Average expected objective value with two-opt+.

(T) and (A) instances were executed on a processor Intel Core
i3-8121U with 8 GB RAM under Linux Ubuntu 20.04. In
CPLEX, the time limit was set to 3600 seconds per instance.

C. HEURISTIC FRAMEWORK RESULTS
We first focus on the results of the heuristic framework on the
random data set. For the sake of clarity, we treat the FIRST
and UNIFORM selection rules as special cases of GEO with
the parameter q = 0 and q = 1 respectively. For each variant,
we ran 2000 iterations with different random seeds and saved
the solution at each iteration. We analyze the impact of the
sorting rule, the value of q, the repair mechanism, and the
local search.

1) SORTING RULE
The feasibility rate defines the percentage of iterations for
which a feasible solution was found. Table 3 compares the
feasibility rate among the sorting rules with the repair mech-
anism enabled and different values of the parameter q, for
all random datasets. We observe that the DEG order always
obtains a 100 % feasibility rate, regardless of the value of
q, whereas LIFO and FIFO reach a 95 % feasibility rate in
the best case. This suggests that treating the most conflicting
items in priority decreases the chance of being stuck during
the construction phase. We suppose that the most conflicting
items are likely to require empty or nearly empty stacks
at placement to avoid infeasibility. If one of these items is
treated later, then more stacks may be occupied by incom-
patible items, reducing the number of candidate stacks. Since
the feasibility rates of LIFO and FIFO are below our require-
ments, we adopt DEG as the sorting rule in the following part.

2) VALUE OF q
Assuming that the stopping criterion is a limit ofN iterations,
we compute the expected average objective value denoted by
EN . The method to compute EN is described in Appendix I.
Tables 4 and 5 show the average expected objective value at
N = 1 andN = 100 iteration(s) respectively, according to the

25338 VOLUME 9, 2021

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

TABLE 4. Average objective value at N = 1 iteration.

TABLE 5. Average expected objective value at N = 100 iterations.

TABLE 6. Average computational time of N = 100 iterations (in seconds).

local search and the parameter q. Figure 7 shows the evolution
of the average expected objective value with a two-opt+
local search. We observe that the most deterministic version
(q = 0) of our algorithm finds better solutions from the first
iterations, but it is not able to improve further the objective
value because of a lack of diversity in the search space. On
the other hand, a more randomized version slows down the
convergence but may reach solutions of better quality after a
very large number of iterations, as suggested by the promising
trajectory of the curve with q = 0.5. Therefore, we suggest
setting the value of q according to the computational time
limits of the decision-maker.

3) REPAIR MECHANISM
We analyze the impact of the repair mechanism on the abil-
ity to find feasible solutions, assuming q = 0.1. Without
the repair mechanism, LIFO, FIFO, and DEG failed to find
at least one feasible solution on respectively 35, 37, and
4 instances. The feasibility rates are respectively 49.6 %,
47.4 %, and 92.9 %, suggesting that DEG is significantly
more reliable for finding feasible solutions. With the repair
mechanism, LIFO, FIFO, and DEG failed on respectively 1,
1, and 0 instances. These results show that the relevance of
repairing infeasible solutions and confirm our choice of DEG
as our default sorting rule.

FIGURE 8. Average expected objective value with q = 0.1.

FIGURE 9. Average expected objective value over time with q = 0.1 (until
300 iterations).

4) LOCAL SEARCH
Assuming q = 0.1, Figure 8 compares the evolution of the
average expected objective value according to the local search
depth. Applying a two-opt+ local search reduced by at least
47 % the number of blocking items on average compared
to no local search, regardless of the iteration between 1 and
100. Compared to exchange+, two-opt+ reduced by 32% the
number of blocking items. We also observe that the extended
versions of the local searches reduced significantly the block-
ing items compared to the basic versions.

Although each iteration of two-opt+ was on average
43 times slower than exchange+ (as shown in Table 6),
two-opt+ outperformed all the other local searches after a
few iterations, as shown in Figure 9. Nevertheless, the latter
result may significantly vary depending on the implementa-
tion details. We observe that the computational time increases
as the value of q increases. We focus on the runs where
two-opt+ was enabled. When q = 0, the average number

VOLUME 9, 2021 25339

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

TABLE 7. Results for n = 100 Sorting rule: DEG, local search: 2-opt+,
q = 0.1.

TABLE 8. Results for n = 200 Sorting rule: DEG, local search: 2-opt+,
q = 0.1.

25340 VOLUME 9, 2021

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

TABLE 9. Average computational time of N = 100 iterations with DEG and q = 0.1 (in seconds).

TABLE 10. Results of the SLP model and the heuristic framework on the real dataset.

of one-opt operations per iteration was 5.7, whereas it was
7.9 when q = 0.2, and 11.2 when q = 0.5. The average
number of two-opt operations per iteration was respectively
2.7, 4.1, and 5.6. It means that when the value of q is greater,
the chances that the constructed solution is far from a local
optimum are greater, then the local search required more
computational time.

Table 9 gives more detailed average computational times
with q = 0.1, according to the number of items and the
number of stacks. We observe a significant gap between
instances having less than n

3 stacks and the others. This gap
and the one observed around the red line in the heatmap of
Figure 6 suggest the existence of a clear shortage between
easy and hard instances.

D. SLP MODEL RESULTS
In the following part, we adopt DEG, q = 0.1, two-opt+ and
N = 100 iterations as the default parameter set of our heuris-
tic framework for a comparisonwith the CPLEXperformance
on the SLP model. In Tables 7 and 8, the column LB shows
the lower bounds computed using the Lemma 4. We used a
modified Bron-Kerbosch algorithm [25] to iteratively search
for largest cliques inGrs. The column BI reports the objective
value of CPLEX obtained after 10 minutes (10m) and after
1 hour (1h), as well as the expected objective value of our
heuristic (H). The last two columns show the computational
times of CPLEX and our heuristic. These results highlight
again that the computation times of the SLPmodel on CPLEX
are not necessarily related to the overall size of the instance,
but the ratio between the number of items and the number
of stacks. Indeed, most of the instances having high n

m ratios
reached the time limit with CPLEX,whereas instances having
low n

m ratios were more often solved in 0.1 seconds. We
observe discrepancies in computational times for instances
T21 to T30, and instances T51 to T60. Some instances were
solved to optimality in 0.1 seconds, whereas the rest reached
at least 1,000 seconds. This large gap suggests that instances

having the same n andm values could be split into two distinct
classes of difficulty.

E. APPLICATION TO THE REAL DATA SET
Table 10 shows the performance of SLP model on the real
data set. The column #inst shows the total numbers of
instances for each block of the port. The columns n and Time
show the total number of items and the total computational
time respectively. The columns BI and V show the number
of blocking items and the number of violating items, respec-
tively, split into three subcolumns showing the number of
blocking/violating items obtained by the current practice of
the port, CPLEX, and the heuristic framework (H). The last
line in Table 10 expresses the percentage of blocking items.
The SLP model (on CPLEX) found the optimal solution
in less than 10 seconds in almost all instances except for
three instances in blocks A7 and B8. However, in both cases,
CPLEX was able to find a feasible solution in a few seconds.
In comparison to current practice in the port, the SLP model
is able to reduce the number of blocking items from 45 % to
0.8 %, the number of violating items from 46 % to 0.1 %, and
the number of mixed blocking/violating items from 62.6 %
to 0.9 %.

VI. CONCLUSION
In this paper, we tackled a Stack Loading Problem (SLP).
We also proved a sufficient condition of infeasibility that can
be checked in polynomial time. In addition to the theoretical
studies, we proposed a mathematical model. We provided a
flexible heuristic framework with several variants in order
to analyze them. The experiments showed that the heuristic
framework with certain parameters was competitive com-
pared to a commercial solver such as CPLEX. Experiments
with CPLEX have shown that our SLP model was able to
solve most of the tested real cases in less than 10 seconds.

In this work, we assumed that the retrieval times were
all known in advance. However, this assumption may not

VOLUME 9, 2021 25341

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

FIGURE 10. A distribution of objective values.

be applicable in some contexts. In our container terminal,
the retrieval time was unknown for approximatively 10 % of
the containers at loading time. One can use the average stay
time as a default value, but it might lead to solutions lacking
robustness. Taking into account this uncertainty based on past
statistics is a perspective of our future work. In container
terminals, a storage area might accept simultaneously 20’ and
40’ containers. Therefore, another perspective is to solve the
problem that allows stacking containers of different sizes (e.g.
two 20’ containers on top of a single 40’ container or the
opposite). We also consider designing exact methods for the
most difficult instances of SLP, in which n > 3m. Another
future research we consider is to find tighter lower bounds.

APPENDIX I. EXPECTED OBJECTIVE VALUE
To compute the average objective value obtained at N itera-
tions, one way is to perform a large number of runs, with a
stopping criterion of N iterations. However, this experiment
might be very long. Instead, we exploit the fact that iterations
are independent. Running a large number of single iterations
results in a distribution of objective values illustrated in Fig-
ure 10. It shows which objective values were obtained with
their respective probabilities. Using this data, we compute the
expected objective value at N iterations.

Given a number N of iterations, an algorithm A and an
instance I, the expected objective value is computed as fol-
lows. Let X1, X2, . . . , XN be random variables following
identical discrete probability distributions, each of them rep-
resenting the objective value obtained by one iteration. Let
X = {x1, . . . , xk} be the set of all the possible outcomes
of Xi ordered by increasing values, and P = {p1, . . . , pk}
their respective probabilities. Let Y = min(X1, . . . ,XN) the
minimum objective value among all the N iterations.
The expected objective value at N iterations is defined by:

E(Y) =
k∑
i=1

xiP(Y = xi)

Given an outcome xi ∈ X ,

P(Y = xi) = P(Y ≥ xi)− P(Y ≥ xi+1)

P(Y ≥ xi) = P(X1 ≥ xi, . . . ,Xk ≥ xi) =
N∏
j=1

P(Xj ≥ xi)

The random variables are identical and independent:

P(Y ≥ xi) = (P(X1 ≥ x))N

The values of xi are ordered by increasing values, then we
have P(X1 ≥ xi) =

∑k
j=i pj and:

P(Y ≥ xi) =

 k∑
j=i

pj

N

Consequently:

P(Y = xi) =

 k∑
j=i

pj

N

−

 k∑
j=i+1

pj

N

Finally, the expected objective value at N iterations is
defined by:

E(Y) =
k∑
i=1

xi

 k∑

j=i

pj

N

−

 k∑
j=i+1

pj

N

In the example of Figure 10, the expected objective value
at 10 iterations is:

2× (110 − 0.810)+ 3× (0.810 − 0.410)

+ 4× (0.410 − 0.110)+ 5× (0.110 − 010) = 2.10748

ACKNOWLEDGMENT
The authors thank Mario Garza-Fabre for his very helpful
remarks.

REFERENCES
[1] The Mersey Docks and Horbour Company. (2017). Schedule of Common

User Charges Liverpool Container Terminals. [Online]. Available:
https://www.peelports.com/ports/liverpool and https://www.peelports.
com/media/2317/2017-liverpool-container-terminals-charges.pdf

[2] O. Portland. (2017). Terminal Tariff. [Online]. Available: https://www2.
portofportland.com/Marine/Tariff and https://popcdn.azureedge.net/pdfs/
Marine%20Tariff%20No.%208%202017.pdf

[3] B. Hd. (2017). Tariff. [Online]. Available: https://www.northport.
com.my/npv2/containerservices.html and http://www.northport.com.
my/npv2/tariff_ccd%20edit%20final%2011.09.15(2).pdf

[4] J. Castonguay. (Apr. 2009). International Shipping: Globalization
in Crisis. [Online]. Available: http://www.visionproject.org/images/img
_magazine/pdfs/international_shipping.pdf

[5] B.-I. Kim, J. Koo, and H. P. Sambhajirao, ‘‘A simplified steel plate stacking
problem,’’ Int. J. Prod. Res., vol. 49, no. 17, pp. 5133–5151, Sep. 2011, doi:
10.1080/00207543.2010.518998.

[6] J. Lehnfeld and S. Knust, ‘‘Loading, unloading and premarshalling of
stacks in storage areas: Survey and classification,’’ Eur. J. Oper. Res.,
vol. 239, no. 2, pp. 297–312, Dec. 201, doi: 10.1016/j.ejor.2014.03.011.

[7] N. Boysen and S. Emde, ‘‘The parallel stack loading problem to minimize
blockages,’’ Eur. J. Oper. Res., vol. 249, no. 2, pp. 618–627, Mar. 2016,
doi: 10.1016/j.ejor.2015.09.033.

[8] S. Boge and S. Knust, ‘‘The parallel stack loading problem minimiz-
ing the number of reshuffles in the retrieval stage,’’ Eur. J. Oper. Res.,
vol. 280, no. 3, pp. 940–952, 2020. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0377221719306587

[9] F. Bruns, S. Knust, and N. V. Shakhlevich, ‘‘Complexity results for storage
loading problems with stacking constraints,’’ Eur. J. Oper. Res., vol. 249,
no. 3, pp. 1074–1081, Mar. 2016, doi: 10.1016/j.ejor.2015.09.036.

[10] A. Delgado, R. M. Jensen, K. Janstrup, T. H. Rose, and K. H. Andersen,
‘‘A constraint programming model for fast optimal stowage of container
vessel bays,’’ Eur. J. Oper. Res., vol. 220, no. 1, pp. 251–261, Jul. 2012,
doi: 10.1016/j.ejor.2012.01.028.

25342 VOLUME 9, 2021

http://dx.doi.org/10.1080/00207543.2010.518998
http://dx.doi.org/10.1016/j.ejor.2014.03.011
http://dx.doi.org/10.1016/j.ejor.2015.09.033
http://dx.doi.org/10.1016/j.ejor.2015.09.036
http://dx.doi.org/10.1016/j.ejor.2012.01.028

C. Lersteau et al.: Solving the Problem of Stacking Goods: Mathematical Model, Heuristics and a Case Study

[11] F. Parre no, D. Pacino, and R. Alvarez-Valdes, ‘‘A GRASP algo-
rithm for the container stowage slot planning problem,’’ Transp. Res.
E, Logistics Transp. Rev., vol. 94, pp. 141–157, Oct. 2016, doi:
10.1016/j.tre.2016.07.011.

[12] R. Guerra-Olivares, N. R. Smith, R. G. González-Ramírez, and
L. E. Cárdenas-Barrón, ‘‘A study of the sensitivity of sequence stacking
strategies for the storage location assignment problem for out-bound con-
tainers in a maritime terminal,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 9, no. 5, pp. 1057–1062, Oct. 2018, doi: 10.1007/s13198-018-0733-
x.

[13] L. Chen and Z. Lu, ‘‘The storage location assignment problem for out-
bound containers in a maritime terminal,’’ Int. J. Prod. Econ., vol. 135,
no. 1, pp. 73–80, Jan. 2012, doi: 10.1016/j.ijpe.2010.09.019.

[14] K. H. Kim, Y. M. Park, and K.-R. Ryu, ‘‘Deriving decision rules to locate
export containers in container yards,’’ Eur. J. Oper. Res., vol. 124, no. 1,
pp. 89–101, Jul. 2000, doi: 10.1016/S0377-2217(99)00116-2.

[15] C. Zhang, W. Chen, L. Shi, and L. Zheng, ‘‘A note on deriving decision
rules to locate export containers in container yards,’’ Eur. J. Oper. Res.,
vol. 205, no. 2, pp. 483–485, Sep. 2010, doi: 10.1016/j.ejor.2009.12.016.

[16] J. Kang, K. R. Ryu, andK. H. Kim, ‘‘Deriving stacking strategies for export
containers with uncertain weight information,’’ J. Intell. Manuf., vol. 17,
no. 4, pp. 399–410, Aug. 2006, doi: 10.1007/s10845-005-0013-x.

[17] M. Olsen and A. Gross, ‘‘Probabilistic analysis of online stacking algo-
rithms,’’ in : Computational Logistics (Lecture Notes in Computer Sci-
ence). Cham, Switzerland: Springer, 2015, pp. 358–369, doi: 10.1007/978-
3-319-24264-4_25.

[18] M. Goerigk, S. Knust, and X. T. Le, ‘‘Robust storage loading problems
with stacking and payload constraints,’’ Eur. J. Oper. Res., vol. 253, no. 1,
pp. 51–67, Aug. 2016, doi: 10.1016/j.ejor.2016.02.019.

[19] X. T. Le and S. Knust, ‘‘MIP-based approaches for robust storage load-
ing problems with stacking constraints,’’ Comput. Oper. Res., vol. 78,
pp. 138–153, Feb. 2017, doi: 10.1016/j.cor.2016.08.016.

[20] M. Caserta, S. Schwarze, and S. Vos, ‘‘A mathematical formula-
tion and complexity considerations for the blocks relocation prob-
lem,’’ Eur. J. Oper. Res., vol. 219, no. 1, pp. 96–104, May 2012, doi:
10.1016/j.ejor.2011.12.039.

[21] V. Galle, S. B. Boroujeni, V. Manshadi, C. Barnhart, and P. Jaillet,
‘‘An average-case asymptotic analysis of the container relocation prob-
lem,’’ Oper. Res. Lett., vol. 44, no. 6, pp. 723–728, Nov. 2016, doi:
10.1016/j.orl.2016.08.006.

[22] K. H. Kim, ‘‘Evaluation of the number of rehandles in container
yards,’’ Comput. Ind. Eng., vol. 32, no. 4, pp. 701–711, Sep. 1997, doi:
10.1016/S0360-8352(97)00024-7.

[23] M. Grötschel, L. Lovász, and A. Schrijver, ‘‘The ellipsoid method and
its consequences in combinatorial optimization,’’ Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981, doi: 10.1007/BF02579273.

[24] T. A. Feo and M. G. Resende, ‘‘Greedy randomized adaptive search
procedures,’’ J. Global Optim., vol. 6, no. 2, pp. 109–133, 1995, doi:
10.10072Fbf01096763.

[25] C. Bron and J. Kerbosch, ‘‘Algorithm 457: Finding all cliques of an
undirected graph,’’ Commun. ACM, vol. 16, no. 9, pp. 575–577, Sep. 1973,
doi: 10.1145/362342.362367.

CHARLY LERSTEAU received the B.Sc. and
M.Sc. degrees in computer science and operational
research from the University of Nantes, France,
in 2013, and the Ph.D. degree in computer sci-
ence from theUniversity of South Brittany, France,
in 2016.

From 2017 to 2019, he was a Research Fel-
low with Liverpool John Moores University, U.K.
Since 2019, he has been a Research Fellow with
the Huazhong University of Science and Tech-

nology, Wuhan, China. He has been involved in multiple projects with
applications in military, maritime, and logistics domains, including one
funded by DfT about rail transportation. His experience covers solving a
range of optimization problems, such as wireless sensor networks, facility
location, container stacking, and vehicle routing problems. His research
interests include algorithms, graph theory, linear programming, metaheuris-
tics, large-scale optimization, and complexity theory.

TRUNG THANH NGUYEN is currently a Reader
in operational research (OR) with Liverpool John
Moores University and the Co-Director of the
Liverpool Offshore and Marine Research Insti-
tute. He has an international standing in opera-
tional research for logistics/transport. He has led
over 20 research projects in transport/logistics,
most with close industry collaborations. He has
published about 50 peer-reviewed articles. All
of his journal articles are in leading journals

(ranked 1st–20th in their fields). He has edited eight books and gave
speeches to many conferences/events. He co-organized six leading confer-
ences. He was a TPC member of more than 30 international conferences.

TRI THANH LE received the Bachelor of
Information Technology degree from the Faculty
of Information Technology, Vietnam Maritime
University, Haiphong, Vietnam, in 2004, and the
M.Sc. degree in information technology from the
Department of Information Technology, Military
Technical Academy (Le Qui Don Technical Uni-
versity), Hanoi, Vietnam, in 2010. He is currently
pursuing the Ph.D. degree in mechanical engi-
neering with VietnamMaritime University, Hanoi.

From September 2016 to August 2017, he was a Researcher with Liverpool
John Moores University, Liverpool, UK. His research interest includes opti-
mization and simulation of maritime, transport, and logistics problems.

HA NAM NGUYEN was born in 1976.
He received the B.Sc. degree in information tech-
nology from VNU-Hanoi University of Science
and Technology, in 1998, the M.Sc. degree in
computer science from Chungwoon University,
South Korea, in 2003, and the Ph.D. degree in
software applications from Korea Aerospace Uni-
versity, South Korea in 2007. From 2007 to 2017,
he worked with the Department of Information
Systems, University of Engineering and Technol-

ogy, as a Senior Lecturer in data mining, statistical machine learning, and
database. He has been the Vice President of the Information Technology
Institute (ITI), Vietnam National University (VNU), Hanoi, since 2017. His
research interests include financial risk analysis, behavior analysis, develop-
ing information systems, and maritime logistics/transport using techniques
from data analysis, modeling, and software engineering.

WEIMING SHEN (Fellow, IEEE) received
the bachelor’s and master’s degrees from
Northern (Beijing) Jiaotong University, China,
in 1983 and 1986, respectively, and the Ph.D.
degree from the University of Technology of
Compiègne, France, in 1996. He was a Princi-
pal Research Officer with the National Research
Council Canada. He is currently a Professor with
the Huazhong University of Science and Tech-
nology (HUST), China, and an Adjunct Professor

with the University of Western Ontario, Canada. His research interest
includes collaborative intelligent technologies and systems, and their appli-
cations in industry. He is a Fellow of the Canadian Academy of Engineering
and the Engineering Institute of Canada and a licensed Professional Engineer
in Ontario, Canada.

VOLUME 9, 2021 25343

http://dx.doi.org/10.1016/j.tre.2016.07.011
http://dx.doi.org/10.1007/s13198-018-0733-x
http://dx.doi.org/10.1007/s13198-018-0733-x
http://dx.doi.org/10.1016/j.ijpe.2010.09.019
http://dx.doi.org/10.1016/S0377-2217(99)00116-2
http://dx.doi.org/10.1016/j.ejor.2009.12.016
http://dx.doi.org/10.1007/s10845-005-0013-x
http://dx.doi.org/10.1007/978-3-319-24264-4_25
http://dx.doi.org/10.1007/978-3-319-24264-4_25
http://dx.doi.org/10.1016/j.ejor.2016.02.019
http://dx.doi.org/10.1016/j.cor.2016.08.016
http://dx.doi.org/10.1016/j.ejor.2011.12.039
http://dx.doi.org/10.1016/j.orl.2016.08.006
http://dx.doi.org/10.1016/S0360-8352(97)00024-7
http://dx.doi.org/10.1007/BF02579273
http://dx.doi.org/10.10072Fbf01096763
http://dx.doi.org/10.1145/362342.362367

