AboutGraph theoryNotationsNotationMeaningnnnNumber of verticesmmmNumber of edgesχ(G)\chi(G)χ(G)Chromatic numberω(G)\omega(G)ω(G)Clique numberϑ(G)\vartheta(G)ϑ(G)Lovasz numberRandom graphs1≤χ(G)≤n1 \leq \chi(G) \leq n1≤χ(G)≤nχ(G)(χ(G)−1)≤2m\chi(G)(\chi(G)-1) \leq 2mχ(G)(χ(G)−1)≤2mχ(G)≥ω(G)\chi(G) \geq \omega(G)χ(G)≥ω(G)χH(G)≤χV(G)≤ϑ(G)≤χf(G)≤χ(G)\chi_H(G) \leq \chi_V(G) \leq \vartheta(G) \leq \chi_f(G) \leq \chi(G)χH(G)≤χV(G)≤ϑ(G)≤χf(G)≤χ(G)Perfect graphsχ(G)=ω(G)\chi(G) = \omega(G)χ(G)=ω(G)
1≤χ(G)≤n1 \leq \chi(G) \leq n1≤χ(G)≤n
χ(G)(χ(G)−1)≤2m\chi(G)(\chi(G)-1) \leq 2mχ(G)(χ(G)−1)≤2m
χ(G)≥ω(G)\chi(G) \geq \omega(G)χ(G)≥ω(G)
χH(G)≤χV(G)≤ϑ(G)≤χf(G)≤χ(G)\chi_H(G) \leq \chi_V(G) \leq \vartheta(G) \leq \chi_f(G) \leq \chi(G)χH(G)≤χV(G)≤ϑ(G)≤χf(G)≤χ(G)
χ(G)=ω(G)\chi(G) = \omega(G)χ(G)=ω(G)